|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 1024 |
|
DEFAULT_MAX_NEW_TOKENS = 512 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
DESCRIPTION = """\ |
|
# Msaidizi wa AI ya Kiswahili |
|
|
|
Hii inaonyesha kielelezo cha Kiswahili (Jacaranda) kilichoundwa kutoka Llama-2 7b, kinachotumiwa kama msaidizi wa AI kwa maisha ya kila siku. |
|
|
|
(This Space demonstrates the [Swahili (Jacaranda) model](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) fine-tuned from Llama-2 7b, used as a daily life AI assistant.) |
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
|
|
--- |
|
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, |
|
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). |
|
""" |
|
|
|
SYSTEM_PROMPT = "Below is an instruction that describes a task. Write a response that appropriately completes the request." |
|
|
|
PROMPT_TEMPLATE = """{% if messages[0]['role'] == 'system' %}{{ messages[0]['content'] + '\n\n' }}{% endif %}### Instruction:\nWewe ni msaidizi wa AI unayepiga gumzo na mtumiaji.Hii ndiyo historia ya soga ya watu unaowasiliana nao kufikia sasa:\n\n{% for message in messages %}{% if message['role'] == 'user' %}{{ '\nUser: ' + message['content'] + '\n'}}{% elif message['role'] == 'assistant' %}{{ '\nAI: ' + message['content'] + '\n'}}{% endif %}{% endfor %}\n\nKama msaidizi wa AI, andika jibu lako linalofuata kwenye gumzo.\n\n### Response:\n""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
if torch.cuda.is_available(): |
|
model_id = "Jacaranda/UlizaLlama" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
tokenizer.chat_template = PROMPT_TEMPLATE |
|
tokenizer.use_default_system_prompt = False |
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
print("chat history: ", chat_history) |
|
conversation = [{"role": "system", "content": SYSTEM_PROMPT}] |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
print(tokenizer.apply_chat_template(conversation, tokenize=False)) |
|
print(conversation) |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
examples = [ |
|
["Ninawezaje kupata usingizi haraka?"], |
|
["Bosi wangu anadhibiti sana, nifanye nini?"], |
|
["Je, ni vipindi gani muhimu katika historia vya kujua kuvihusu?"], |
|
["Ni kazi gani nzuri ikiwa ninataka kupata pesa lakini pia kufurahiya?"], |
|
["Nivae nini kwenye harusi?"], |
|
] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox(label="Ingiza ujumbe wako / Enter your message") |
|
submit_btn = gr.Button("Wasilisha / Submit") |
|
clear = gr.Button("Wazi / Clear") |
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
def bot(history, max_new_tokens, temperature, top_p, top_k, repetition_penalty): |
|
user_message = history[-1][0] |
|
chat_history = [(msg[0], msg[1]) for msg in history[:-1]] |
|
bot_message = "" |
|
for response in generate(user_message, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty): |
|
bot_message = response |
|
history[-1][1] = bot_message |
|
yield history |
|
|
|
gr.Examples(examples=examples, inputs=[msg], label="Mifano / Examples") |
|
|
|
with gr.Accordion("Chaguzi za Juu / Advanced Options", open=False): |
|
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) |
|
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) |
|
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) |
|
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) |
|
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) |
|
|
|
submit_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, |
|
[chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], |
|
chatbot, |
|
) |
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, |
|
[chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], |
|
chatbot, |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|