sherzod-hakimov
commited on
Commit
·
69c36b6
1
Parent(s):
b345ff4
update page loading
Browse files- app.py +32 -12
- src/assets/text_content.py +5 -1
- src/plot_utils.py +24 -3
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
4 |
from src.leaderboard_utils import filter_search, get_github_data
|
5 |
from src.plot_utils import split_models, compare_plots
|
6 |
|
7 |
# For Leaderboards
|
|
|
8 |
# Get CSV data
|
9 |
global primary_leaderboard_df, version_dfs, version_names
|
10 |
primary_leaderboard_df, version_dfs, version_names = get_github_data()
|
@@ -38,19 +39,22 @@ with main_app:
|
|
38 |
elem_id="search-bar",
|
39 |
)
|
40 |
|
41 |
-
leaderboard_table = gr.
|
42 |
value=primary_leaderboard_df[0],
|
43 |
elem_id="leaderboard-table",
|
44 |
interactive=False,
|
45 |
visible=True,
|
|
|
46 |
)
|
47 |
|
|
|
|
|
48 |
# Add a dummy leaderboard to handle search queries from the primary_leaderboard_df and not update primary_leaderboard_df
|
49 |
-
dummy_leaderboard_table = gr.
|
50 |
value=primary_leaderboard_df[0],
|
51 |
elem_id="leaderboard-table",
|
52 |
interactive=False,
|
53 |
-
visible=False
|
54 |
)
|
55 |
|
56 |
search_bar.submit(
|
@@ -106,6 +110,14 @@ with main_app:
|
|
106 |
elem_id="value-select-5",
|
107 |
interactive=True,
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
with gr.Row():
|
111 |
dummy_plot_df = gr.DataFrame(
|
@@ -120,35 +132,42 @@ with main_app:
|
|
120 |
|
121 |
open_models_selection.change(
|
122 |
compare_plots,
|
123 |
-
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend],
|
124 |
plot_output,
|
125 |
queue=True
|
126 |
)
|
127 |
|
128 |
closed_models_selection.change(
|
129 |
compare_plots,
|
130 |
-
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend],
|
131 |
plot_output,
|
132 |
queue=True
|
133 |
)
|
134 |
|
135 |
show_all.change(
|
136 |
compare_plots,
|
137 |
-
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend],
|
138 |
plot_output,
|
139 |
queue=True
|
140 |
)
|
141 |
|
142 |
show_names.change(
|
143 |
compare_plots,
|
144 |
-
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend],
|
145 |
plot_output,
|
146 |
queue=True
|
147 |
)
|
148 |
|
149 |
show_legend.change(
|
150 |
compare_plots,
|
151 |
-
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
plot_output,
|
153 |
queue=True
|
154 |
)
|
@@ -165,18 +184,19 @@ with main_app:
|
|
165 |
elem_id="search-bar-2",
|
166 |
)
|
167 |
|
168 |
-
prev_table = gr.
|
169 |
value=prev_df,
|
170 |
elem_id="leaderboard-table",
|
171 |
interactive=False,
|
172 |
visible=True,
|
|
|
173 |
)
|
174 |
|
175 |
-
dummy_prev_table = gr.
|
176 |
value=prev_df,
|
177 |
elem_id="leaderboard-table",
|
178 |
interactive=False,
|
179 |
-
visible=False
|
180 |
)
|
181 |
|
182 |
search_bar_prev.submit(
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CLEMSCORE_TEXT
|
4 |
from src.leaderboard_utils import filter_search, get_github_data
|
5 |
from src.plot_utils import split_models, compare_plots
|
6 |
|
7 |
# For Leaderboards
|
8 |
+
dataframe_height = 800 # Height of the table in pixels
|
9 |
# Get CSV data
|
10 |
global primary_leaderboard_df, version_dfs, version_names
|
11 |
primary_leaderboard_df, version_dfs, version_names = get_github_data()
|
|
|
39 |
elem_id="search-bar",
|
40 |
)
|
41 |
|
42 |
+
leaderboard_table = gr.Dataframe(
|
43 |
value=primary_leaderboard_df[0],
|
44 |
elem_id="leaderboard-table",
|
45 |
interactive=False,
|
46 |
visible=True,
|
47 |
+
height=dataframe_height
|
48 |
)
|
49 |
|
50 |
+
gr.HTML(CLEMSCORE_TEXT)
|
51 |
+
|
52 |
# Add a dummy leaderboard to handle search queries from the primary_leaderboard_df and not update primary_leaderboard_df
|
53 |
+
dummy_leaderboard_table = gr.Dataframe(
|
54 |
value=primary_leaderboard_df[0],
|
55 |
elem_id="leaderboard-table",
|
56 |
interactive=False,
|
57 |
+
visible=False
|
58 |
)
|
59 |
|
60 |
search_bar.submit(
|
|
|
110 |
elem_id="value-select-5",
|
111 |
interactive=True,
|
112 |
)
|
113 |
+
with gr.Column():
|
114 |
+
mobile_view = gr.CheckboxGroup(
|
115 |
+
["Mobile View"],
|
116 |
+
label ="View plot on smaller screens 📱",
|
117 |
+
value=[],
|
118 |
+
elem_id="value-select-6",
|
119 |
+
interactive=True,
|
120 |
+
)
|
121 |
|
122 |
with gr.Row():
|
123 |
dummy_plot_df = gr.DataFrame(
|
|
|
132 |
|
133 |
open_models_selection.change(
|
134 |
compare_plots,
|
135 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
136 |
plot_output,
|
137 |
queue=True
|
138 |
)
|
139 |
|
140 |
closed_models_selection.change(
|
141 |
compare_plots,
|
142 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
143 |
plot_output,
|
144 |
queue=True
|
145 |
)
|
146 |
|
147 |
show_all.change(
|
148 |
compare_plots,
|
149 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
150 |
plot_output,
|
151 |
queue=True
|
152 |
)
|
153 |
|
154 |
show_names.change(
|
155 |
compare_plots,
|
156 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
157 |
plot_output,
|
158 |
queue=True
|
159 |
)
|
160 |
|
161 |
show_legend.change(
|
162 |
compare_plots,
|
163 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
164 |
+
plot_output,
|
165 |
+
queue=True
|
166 |
+
)
|
167 |
+
|
168 |
+
mobile_view.change(
|
169 |
+
compare_plots,
|
170 |
+
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, mobile_view],
|
171 |
plot_output,
|
172 |
queue=True
|
173 |
)
|
|
|
184 |
elem_id="search-bar-2",
|
185 |
)
|
186 |
|
187 |
+
prev_table = gr.Dataframe(
|
188 |
value=prev_df,
|
189 |
elem_id="leaderboard-table",
|
190 |
interactive=False,
|
191 |
visible=True,
|
192 |
+
height=dataframe_height
|
193 |
)
|
194 |
|
195 |
+
dummy_prev_table = gr.Dataframe(
|
196 |
value=prev_df,
|
197 |
elem_id="leaderboard-table",
|
198 |
interactive=False,
|
199 |
+
visible=False
|
200 |
)
|
201 |
|
202 |
search_bar_prev.submit(
|
src/assets/text_content.py
CHANGED
@@ -4,13 +4,17 @@ INTRODUCTION_TEXT = """
|
|
4 |
<h6 align="center">
|
5 |
The CLEM Leaderboard aims to track, rank and evaluate current cLLMs (chat-optimized Large Language Models) with the suggested pronounciation “clems”.
|
6 |
|
7 |
-
The benchmarking approach is described in [Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents](https://
|
8 |
|
9 |
Source code for benchmarking "clems" is available here: [Clembench](https://github.com/clembench/clembench)
|
10 |
|
11 |
All generated files and results from the benchmark runs are available here: [clembench-runs](https://github.com/clembench/clembench-runs) </h6>
|
12 |
"""
|
13 |
|
|
|
|
|
|
|
|
|
14 |
SHORT_NAMES = {
|
15 |
"t0.0": "",
|
16 |
"claude-v1.3": "cl-1.3",
|
|
|
4 |
<h6 align="center">
|
5 |
The CLEM Leaderboard aims to track, rank and evaluate current cLLMs (chat-optimized Large Language Models) with the suggested pronounciation “clems”.
|
6 |
|
7 |
+
The benchmarking approach is described in [Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents](https://aclanthology.org/2023.emnlp-main.689.pdf).
|
8 |
|
9 |
Source code for benchmarking "clems" is available here: [Clembench](https://github.com/clembench/clembench)
|
10 |
|
11 |
All generated files and results from the benchmark runs are available here: [clembench-runs](https://github.com/clembench/clembench-runs) </h6>
|
12 |
"""
|
13 |
|
14 |
+
CLEMSCORE_TEXT = """
|
15 |
+
The <i>clemscore</i> combines a score representing the overall ability to just follow the game instructions (separately scored in field <i>Played</i>) and the quality of the play in attempt where instructions were followed (field <i>Quality Scores</i>). For details about the games / interaction settings, and for results on older versions of the benchmark, see the tab <i>Versions and Details</i>.
|
16 |
+
"""
|
17 |
+
|
18 |
SHORT_NAMES = {
|
19 |
"t0.0": "",
|
20 |
"claude-v1.3": "cl-1.3",
|
src/plot_utils.py
CHANGED
@@ -3,7 +3,7 @@ import plotly.express as px
|
|
3 |
|
4 |
from src.assets.text_content import SHORT_NAMES
|
5 |
|
6 |
-
def plotly_plot(df:pd.DataFrame, LIST:list, ALL:list, NAMES:list, LEGEND:list):
|
7 |
'''
|
8 |
Takes in a list of models for a plotly plot
|
9 |
Args:
|
@@ -12,6 +12,7 @@ def plotly_plot(df:pd.DataFrame, LIST:list, ALL:list, NAMES:list, LEGEND:list):
|
|
12 |
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
|
13 |
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
|
14 |
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
|
|
|
15 |
Returns:
|
16 |
Fig: plotly figure
|
17 |
'''
|
@@ -52,11 +53,30 @@ def plotly_plot(df:pd.DataFrame, LIST:list, ALL:list, NAMES:list, LEGEND:list):
|
|
52 |
fig.update_xaxes(range=[-5, 105])
|
53 |
fig.update_yaxes(range=[-5, 105])
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return fig
|
56 |
|
57 |
|
58 |
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
|
59 |
-
def compare_plots(df: pd.DataFrame, LIST1: list, LIST2: list, ALL:list, NAMES:list, LEGEND: list):
|
60 |
'''
|
61 |
Quality Score v/s % Played plot by selecting models
|
62 |
Args:
|
@@ -66,13 +86,14 @@ def compare_plots(df: pd.DataFrame, LIST1: list, LIST2: list, ALL:list, NAMES:li
|
|
66 |
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
|
67 |
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
|
68 |
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
|
|
|
69 |
Returns:
|
70 |
fig: The plot
|
71 |
'''
|
72 |
|
73 |
# Combine lists for Open source and commercial models
|
74 |
LIST = LIST1 + LIST2
|
75 |
-
fig = plotly_plot(df, LIST, ALL, NAMES, LEGEND)
|
76 |
|
77 |
return fig
|
78 |
|
|
|
3 |
|
4 |
from src.assets.text_content import SHORT_NAMES
|
5 |
|
6 |
+
def plotly_plot(df:pd.DataFrame, LIST:list, ALL:list, NAMES:list, LEGEND:list, MOBILE:list ):
|
7 |
'''
|
8 |
Takes in a list of models for a plotly plot
|
9 |
Args:
|
|
|
12 |
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
|
13 |
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
|
14 |
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
|
15 |
+
MOBILE: Either [] or ["Mobile View"] - toggle view to for smaller screens
|
16 |
Returns:
|
17 |
Fig: plotly figure
|
18 |
'''
|
|
|
53 |
fig.update_xaxes(range=[-5, 105])
|
54 |
fig.update_yaxes(range=[-5, 105])
|
55 |
|
56 |
+
if MOBILE:
|
57 |
+
fig.update_layout(height=300)
|
58 |
+
|
59 |
+
|
60 |
+
if MOBILE and LEGEND:
|
61 |
+
fig.update_layout(height=450)
|
62 |
+
fig.update_layout(legend=dict(
|
63 |
+
yanchor="bottom",
|
64 |
+
y=-5.52,
|
65 |
+
xanchor="left",
|
66 |
+
x=0.01
|
67 |
+
))
|
68 |
+
|
69 |
+
fig.update_layout(
|
70 |
+
xaxis_title="",
|
71 |
+
yaxis_title="",
|
72 |
+
title="% Played v/s Quality Score"
|
73 |
+
)
|
74 |
+
|
75 |
return fig
|
76 |
|
77 |
|
78 |
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
|
79 |
+
def compare_plots(df: pd.DataFrame, LIST1: list, LIST2: list, ALL:list, NAMES:list, LEGEND: list, MOBILE: list):
|
80 |
'''
|
81 |
Quality Score v/s % Played plot by selecting models
|
82 |
Args:
|
|
|
86 |
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
|
87 |
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
|
88 |
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
|
89 |
+
MOBILE: Either [] or ["Mobile View"] - toggle view to for smaller screens
|
90 |
Returns:
|
91 |
fig: The plot
|
92 |
'''
|
93 |
|
94 |
# Combine lists for Open source and commercial models
|
95 |
LIST = LIST1 + LIST2
|
96 |
+
fig = plotly_plot(df, LIST, ALL, NAMES, LEGEND, MOBILE)
|
97 |
|
98 |
return fig
|
99 |
|