Spaces:
Running
Running
Yash Chauhan
commited on
Commit
·
9792cba
1
Parent(s):
3b3ca65
[updated] code
Browse files- Dockerfile +18 -0
- app.py +50 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python image with CUDA support if using GPU
|
| 2 |
+
FROM nvidia/cuda:12.1.1-devel-ubuntu22.04
|
| 3 |
+
|
| 4 |
+
RUN useradd -m -u 1000 user
|
| 5 |
+
USER user
|
| 6 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 7 |
+
|
| 8 |
+
WORKDIR /app
|
| 9 |
+
|
| 10 |
+
RUN apt-get update && apt-get install -y \
|
| 11 |
+
python3-pip \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 15 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 16 |
+
COPY --chown=user . /app
|
| 17 |
+
|
| 18 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from fastapi import FastAPI, File, UploadFile
|
| 6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
# Device configuration
|
| 11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 13 |
+
|
| 14 |
+
# Load Whisper model
|
| 15 |
+
model_id = "openai/whisper-large-v3-turbo"
|
| 16 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 17 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 18 |
+
).to(device)
|
| 19 |
+
|
| 20 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 21 |
+
|
| 22 |
+
pipe = pipeline(
|
| 23 |
+
"automatic-speech-recognition",
|
| 24 |
+
model=model,
|
| 25 |
+
tokenizer=processor.tokenizer,
|
| 26 |
+
feature_extractor=processor.feature_extractor,
|
| 27 |
+
torch_dtype=torch_dtype,
|
| 28 |
+
device=device
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
@app.get("/")
|
| 32 |
+
async def root():
|
| 33 |
+
return {"message": "Welcome to Whisper API!"}
|
| 34 |
+
|
| 35 |
+
@app.post("/transcribe/")
|
| 36 |
+
async def transcribe_audio(file: UploadFile = File(...)):
|
| 37 |
+
try:
|
| 38 |
+
# Save the uploaded file temporarily
|
| 39 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".wav") as temp_audio:
|
| 40 |
+
temp_audio.write(await file.read())
|
| 41 |
+
temp_audio.flush()
|
| 42 |
+
|
| 43 |
+
# Transcribe the audio
|
| 44 |
+
result = pipe(temp_audio.name, return_timestamps="word")
|
| 45 |
+
|
| 46 |
+
return {"transcription": result["chunks"]}
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
return {"error": str(e)}
|
| 50 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
fastapi
|
| 4 |
+
uvicorn
|
| 5 |
+
pydantic
|
| 6 |
+
numpy
|