codinglabsong's picture
Rename gradio_app.py to app.py
047b554 verified
import os
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
import gradio as gr
# Load config and class names
cfg = yaml.safe_load(open("config/prod.yaml"))
with open("class_names.txt") as f:
class_names = [line.strip() for line in f]
# Build and load model
def build_model(num_classes: int) -> nn.Module:
model = models.efficientnet_b2(weights=models.EfficientNet_B2_Weights.IMAGENET1K_V1)
in_features = model.classifier[1].in_features
model.classifier[1] = nn.Linear(in_features, num_classes)
return model
def load_model(path: str, num_classes: int) -> nn.Module:
model = build_model(num_classes)
state = torch.load(path, map_location="cpu")
state = {k.replace("_orig_mod.", ""): v for k, v in state.items()}
model.load_state_dict(state)
model.eval()
return model
model = load_model("output/model.pth", len(class_names))
# Preprocessing (must match training)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(cfg["estimator"]["hyperparameters"]["img-size"]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(image):
image = preprocess(image).unsqueeze(0)
with torch.no_grad():
outputs = model(image)
probs = F.softmax(outputs, dim=1)[0]
return {class_names[i]: float(probs[i]) for i in probs.argsort(descending=True)}
# Example images for the UI
example_dir = "examples"
if os.path.isdir(example_dir):
examples = [
[os.path.join(example_dir, f)]
for f in os.listdir(example_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
else:
examples = None
# Launch Gradio app
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=5, label="Top Classes"),
title="Food101 Classifier",
examples=examples,
).launch()