|
import os |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_community.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import ChatOpenAI |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.document_loaders import DirectoryLoader |
|
from htmlTemplates import css, bot_template, user_template |
|
from langchain.globals import set_verbose |
|
set_verbose(False) |
|
|
|
|
|
def read_files_from_directory(directory): |
|
files = [] |
|
for filename in os.listdir(directory): |
|
if filename.endswith(".pdf"): |
|
files.append(os.path.join(directory, filename)) |
|
return files |
|
|
|
def get_pdf_text(pdf_docs): |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
def get_text_chunks(raw_text): |
|
text_splitter = CharacterTextSplitter( |
|
separator="\n", |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len |
|
) |
|
chunks = text_splitter.split_text(raw_text) |
|
return chunks |
|
|
|
def get_vector_store(text_chunks): |
|
|
|
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv('OPENAI_API_KEY')) |
|
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) |
|
return vectorstore |
|
|
|
def get_conversation_chain(vectorstore): |
|
if not os.getenv('OPENAI_API_KEY') and not os.getenv('LAW_GPT_MODEL_URL'): |
|
raise ValueError("Please provide either OPENAI_API_KEY or LAW_GPT_MODEL_URL in the .env file") |
|
|
|
|
|
if os.getenv('LAW_GPT_MODEL_URL'): |
|
llm = HuggingFaceHub(repo_id=os.getenv('LAW_GPT_MODEL_URL')) |
|
else: |
|
llm = ChatOpenAI(openai_api_key=os.getenv('OPENAI_API_KEY')) |
|
|
|
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) |
|
conversation_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=vectorstore.as_retriever(), |
|
memory=memory |
|
) |
|
return conversation_chain |
|
|
|
|
|
def handle_user_input(user_question): |
|
if st.session_state.conversation is not None: |
|
|
|
response = st.session_state.conversation({'question': user_question}) |
|
st.session_state.chat_history = response['chat_history'] |
|
|
|
for i, message in enumerate(st.session_state.chat_history): |
|
if i % 2 == 0: |
|
st.write(user_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
else: |
|
st.write(bot_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
else: |
|
st.write("No data is loaded for RAG. Please upload a PDFs files to the data/ directory.") |
|
|
|
def main(): |
|
load_dotenv() |
|
|
|
st.set_page_config(page_title="EULawGPT - LLM model that can understand and reason about EU public domain data", page_icon=":books:") |
|
st.write(css, unsafe_allow_html=True) |
|
|
|
|
|
files = read_files_from_directory('./data') |
|
raw_knowledge_text = get_pdf_text(files) |
|
raw_knowledge_chunks = get_text_chunks(raw_knowledge_text) |
|
vectorstore_knowledge = get_vector_store(raw_knowledge_chunks) |
|
|
|
st.session_state.conversation = get_conversation_chain(vectorstore_knowledge) |
|
|
|
if "conversation" not in st.session_state: |
|
st.session_state.conversation = None |
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = None |
|
|
|
st.title("EU Law GPT") |
|
st.write("EU Law GPT is a LLM model that can understand and reason about EU public domain data") |
|
|
|
st.subheader('Popular questions:') |
|
if st.button("What is happening in Equador?"): |
|
handle_user_input("What is happening in Equador?") |
|
|
|
if st.button("What EU will do with Ecuador crisis?"): |
|
handle_user_input("What EU will do with Ecuador crisis?") |
|
|
|
st.subheader('Ask anything:') |
|
user_question = st.text_input("Ask a question about EU Law and Parlament work") |
|
|
|
if user_question: |
|
handle_user_input(user_question) |
|
|
|
if __name__ == '__main__': |
|
main() |