Spaces:
Sleeping
Sleeping
"use server" | |
import { v4 as uuidv4 } from "uuid" | |
import Replicate from "replicate" | |
import { RenderRequest, RenderedScene, RenderingEngine, Settings } from "@/types" | |
import { generateSeed } from "@/lib/generateSeed" | |
import { sleep } from "@/lib/sleep" | |
const serverRenderingEngine = `${process.env.RENDERING_ENGINE || ""}` as RenderingEngine | |
// TODO: we should split Hugging Face and Replicate backends into separate files | |
const serverHuggingfaceApiKey = `${process.env.AUTH_HF_API_TOKEN || ""}` | |
const serverHuggingfaceApiUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_URL || ""}` | |
const serverHuggingfaceInferenceApiModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}` | |
const serverHuggingfaceInferenceApiModelRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}` | |
const serverHuggingfaceInferenceApiModelTrigger = `${process.env.RENDERING_HF_INFERENCE_API_MODEL_TRIGGER || ""}` | |
const serverHuggingfaceInferenceApiFileType = `${process.env.RENDERING_HF_INFERENCE_API_FILE_TYPE || ""}` | |
const serverReplicateApiKey = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}` | |
const serverReplicateApiModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}` | |
const serverReplicateApiModelVersion = `${process.env.RENDERING_REPLICATE_API_MODEL_VERSION || ""}` | |
const serverReplicateApiModelTrigger = `${process.env.RENDERING_REPLICATE_API_MODEL_TRIGGER || ""}` | |
const videochainToken = `${process.env.AUTH_VIDEOCHAIN_API_TOKEN || ""}` | |
const videochainApiUrl = `${process.env.RENDERING_VIDEOCHAIN_API_URL || ""}` | |
const serverOpenaiApiKey = `${process.env.AUTH_OPENAI_API_KEY || ""}` | |
const serverOpenaiApiBaseUrl = `${process.env.RENDERING_OPENAI_API_BASE_URL || "https://api.openai.com/v1"}` | |
const serverOpenaiApiModel = `${process.env.RENDERING_OPENAI_API_MODEL || "dall-e-3"}` | |
export async function newRender({ | |
prompt, | |
// negativePrompt, | |
width, | |
height, | |
withCache, | |
settings, | |
}: { | |
prompt: string | |
// negativePrompt: string[] | |
width: number | |
height: number | |
withCache: boolean | |
settings: Settings | |
}) { | |
// throw new Error("Planned maintenance") | |
if (!prompt) { | |
const error = `cannot call the rendering API without a prompt, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let defaulResult: RenderedScene = { | |
renderId: "", | |
status: "error", | |
assetUrl: "", | |
alt: prompt || "", | |
maskUrl: "", | |
error: "failed to fetch the data", | |
segments: [] | |
} | |
const nbInferenceSteps = 30 | |
const guidanceScale = 9 | |
let renderingEngine = serverRenderingEngine | |
let openaiApiKey = serverOpenaiApiKey | |
let openaiApiModel = serverOpenaiApiModel | |
let replicateApiKey = serverReplicateApiKey | |
let replicateApiModel = serverReplicateApiModel | |
let replicateApiModelVersion = serverReplicateApiModelVersion | |
let replicateApiModelTrigger = serverReplicateApiModelTrigger | |
let huggingfaceApiKey = serverHuggingfaceApiKey | |
let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel | |
let huggingfaceApiUrl = serverHuggingfaceApiUrl | |
let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel | |
let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger | |
let huggingfaceInferenceApiFileType = serverHuggingfaceInferenceApiFileType | |
const placeholder = "<USE YOUR OWN TOKEN>" | |
// console.log("settings:", JSON.stringify(settings, null, 2)) | |
if ( | |
settings.renderingModelVendor === "OPENAI" && | |
settings.openaiApiKey && | |
settings.openaiApiKey !== placeholder && | |
settings.openaiApiModel | |
) { | |
console.log("using OpenAI using user credentials (hidden)") | |
renderingEngine = "OPENAI" | |
openaiApiKey = settings.openaiApiKey | |
openaiApiModel = settings.openaiApiModel | |
} if ( | |
settings.renderingModelVendor === "REPLICATE" && | |
settings.replicateApiKey && | |
settings.replicateApiKey !== placeholder && | |
settings.replicateApiModel && | |
settings.replicateApiModelVersion | |
) { | |
console.log("using Replicate using user credentials (hidden)") | |
renderingEngine = "REPLICATE" | |
replicateApiKey = settings.replicateApiKey | |
replicateApiModel = settings.replicateApiModel | |
replicateApiModelVersion = settings.replicateApiModelVersion | |
replicateApiModelTrigger = settings.replicateApiModelTrigger | |
} else if ( | |
settings.renderingModelVendor === "HUGGINGFACE" && | |
settings.huggingfaceApiKey && | |
settings.huggingfaceApiKey !== placeholder && | |
settings.huggingfaceInferenceApiModel | |
) { | |
console.log("using Hugging Face using user credentials (hidden)") | |
renderingEngine = "INFERENCE_API" | |
huggingfaceApiKey = settings.huggingfaceApiKey | |
huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel | |
huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger | |
huggingfaceInferenceApiFileType = settings.huggingfaceInferenceApiFileType | |
} | |
try { | |
if (renderingEngine === "OPENAI") { | |
/* | |
const openai = new OpenAI({ | |
apiKey: openaiApiKey | |
}); | |
*/ | |
// When using DALL·E 3, images can have a size of 1024x1024, 1024x1792 or 1792x1024 pixels. | |
// the improved resolution is nice, but the AI Comic Factory needs a special ratio | |
// anyway, let's see what we can do | |
const size = | |
width > height ? '1792x1024' : | |
width < height ? '1024x1792' : | |
'1024x1024' | |
/* | |
const response = await openai.createImage({ | |
model: "dall-e-3", | |
prompt, | |
n: 1, | |
size: size as any, | |
// quality: "standard", | |
}) | |
*/ | |
const res = await fetch(`${serverOpenaiApiBaseUrl}/images/generations`, { | |
method: "POST", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${openaiApiKey}`, | |
}, | |
body: JSON.stringify({ | |
model: openaiApiModel, | |
prompt, | |
n: 1, | |
size, | |
// quality: "standard", | |
}), | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as { data: { url: string }[] } | |
// console.log("response:", response) | |
return { | |
renderId: uuidv4(), | |
status: "completed", | |
assetUrl: response.data[0].url || "", | |
alt: prompt, | |
error: "", | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} else if (renderingEngine === "REPLICATE") { | |
if (!replicateApiKey) { | |
throw new Error(`invalid replicateApiKey, you need to configure your REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) | |
} | |
if (!replicateApiModel) { | |
throw new Error(`invalid replicateApiModel, you need to configure your REPLICATE_API_MODEL in order to use the REPLICATE rendering engine`) | |
} | |
if (!replicateApiModelVersion) { | |
throw new Error(`invalid replicateApiModelVersion, you need to configure your REPLICATE_API_MODEL_VERSION in order to use the REPLICATE rendering engine`) | |
} | |
const replicate = new Replicate({ auth: replicateApiKey }) | |
const seed = generateSeed() | |
const prediction = await replicate.predictions.create({ | |
version: replicateApiModelVersion, | |
input: { | |
prompt: [ | |
"beautiful", | |
// "intricate details", | |
replicateApiModelTrigger || "", | |
prompt, | |
"award winning", | |
"high resolution" | |
].filter(x => x).join(", "), | |
width, | |
height, | |
seed, | |
...replicateApiModelTrigger && { | |
lora_scale: 0.85 // we generally want something high here | |
}, | |
} | |
}) | |
// no need to reply straight away as images take time to generate, this isn't instantaneous | |
// also our friends at Replicate won't like it if we spam them with requests | |
await sleep(4000) | |
return { | |
renderId: prediction.id, | |
status: "pending", | |
assetUrl: "", | |
alt: prompt, | |
error: prediction.error, | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} if (renderingEngine === "INFERENCE_ENDPOINT" || renderingEngine === "INFERENCE_API") { | |
if (!huggingfaceApiKey) { | |
throw new Error(`invalid huggingfaceApiKey, you need to configure your HF_API_TOKEN in order to use the ${renderingEngine} rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_ENDPOINT" && !huggingfaceApiUrl) { | |
throw new Error(`invalid huggingfaceApiUrl, you need to configure your RENDERING_HF_INFERENCE_ENDPOINT_URL in order to use the INFERENCE_ENDPOINT rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModel) { | |
throw new Error(`invalid huggingfaceInferenceApiModel, you need to configure your RENDERING_HF_INFERENCE_API_BASE_MODEL in order to use the INFERENCE_API rendering engine`) | |
} | |
if (renderingEngine === "INFERENCE_API" && !huggingfaceInferenceApiModelRefinerModel) { | |
throw new Error(`invalid huggingfaceInferenceApiModelRefinerModel, you need to configure your RENDERING_HF_INFERENCE_API_REFINER_MODEL in order to use the INFERENCE_API rendering engine`) | |
} | |
const baseModelUrl = renderingEngine === "INFERENCE_ENDPOINT" | |
? huggingfaceApiUrl | |
: `https://api-inference.huggingface.co/models/${huggingfaceInferenceApiModel}` | |
const positivePrompt = [ | |
"beautiful", | |
// "intricate details", | |
huggingfaceInferenceApiModelTrigger || "", | |
prompt, | |
"award winning", | |
"high resolution" | |
].filter(x => x).join(", ") | |
const res = await fetch(baseModelUrl, { | |
method: "POST", | |
headers: { | |
"Content-Type": "application/json", | |
Accept: huggingfaceInferenceApiFileType, | |
Authorization: `Bearer ${huggingfaceApiKey}`, | |
}, | |
body: JSON.stringify({ | |
inputs: positivePrompt, | |
parameters: { | |
num_inference_steps: nbInferenceSteps, | |
guidance_scale: guidanceScale, | |
width, | |
height, | |
}, | |
// this doesn't do what you think it does | |
use_cache: false, // withCache, | |
}), | |
cache: "no-store", | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
const content = await res.text() | |
console.error(content) | |
// This will activate the closest `error.js` Error Boundary | |
throw new Error('Failed to fetch data') | |
} | |
const blob = await res.arrayBuffer() | |
const contentType = res.headers.get('content-type') | |
let assetUrl = `data:${contentType};base64,${Buffer.from(blob).toString('base64')}` | |
// note: there is no "refiner" step yet for custom inference endpoint | |
// you probably don't need it anyway, as you probably want to deploy an all-in-one model instead for perf reasons | |
if (renderingEngine === "INFERENCE_API") { | |
try { | |
const refinerModelUrl = `https://api-inference.huggingface.co/models/${huggingfaceInferenceApiModelRefinerModel}` | |
const res = await fetch(refinerModelUrl, { | |
method: "POST", | |
headers: { | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${huggingfaceApiKey}`, | |
}, | |
body: JSON.stringify({ | |
inputs: Buffer.from(blob).toString('base64'), | |
parameters: { | |
prompt: positivePrompt, | |
num_inference_steps: nbInferenceSteps, | |
guidance_scale: guidanceScale, | |
width, | |
height, | |
}, | |
// this doesn't do what you think it does | |
use_cache: false, // withCache, | |
}), | |
cache: "no-store", | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
const content = await res.json() | |
// if (content.error.include("currently loading")) { | |
// console.log("refiner isn't ready yet") | |
throw new Error(content?.error || 'Failed to fetch data') | |
} | |
const refinedBlob = await res.arrayBuffer() | |
const contentType = res.headers.get('content-type') | |
assetUrl = `data:${contentType};base64,${Buffer.from(refinedBlob).toString('base64')}` | |
} catch (err) { | |
console.log(`Refiner step failed, but this is not a blocker. Error details: ${err}`) | |
} | |
} | |
return { | |
renderId: uuidv4(), | |
status: "completed", | |
assetUrl, | |
alt: prompt, | |
error: "", | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} else { | |
/* | |
console.log("sending:", { | |
prompt, | |
// negativePrompt, unused for now | |
nbFrames: 1, | |
nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best | |
actionnables: [], // ["text block"], | |
segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic | |
width, | |
height, | |
// no need to upscale right now as we generate tiny panels | |
// maybe later we can provide an "export" button to PDF | |
// unfortunately there are too many requests for upscaling, | |
// the server is always down | |
upscalingFactor: 1, // 2, | |
turbo: settings.renderingUseTurbo, | |
// analyzing doesn't work yet, it seems.. | |
analyze: false, // analyze: true, | |
cache: "ignore" | |
}) | |
*/ | |
const res = await fetch(`${videochainApiUrl}${videochainApiUrl.endsWith("/") ? "" : "/"}render`, { | |
method: "POST", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
body: JSON.stringify({ | |
prompt, | |
// negativePrompt, unused for now | |
nbFrames: 1, | |
nbSteps: nbInferenceSteps, // 20 = fast, 30 = better, 50 = best | |
actionnables: [], // ["text block"], | |
segmentation: "disabled", // "firstframe", // one day we will remove this param, to make it automatic | |
width, | |
height, | |
// no need to upscale right now as we generate tiny panels | |
// maybe later we can provide an "export" button to PDF | |
// unfortunately there are too many requests for upscaling, | |
// the server is always down | |
upscalingFactor: 1, // 2, | |
turbo: settings.renderingUseTurbo, | |
// analyzing doesn't work yet, it seems.. | |
analyze: false, // analyze: true, | |
cache: "ignore" | |
} as Partial<RenderRequest>), | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as RenderedScene | |
return response | |
} | |
} catch (err) { | |
console.error(err) | |
return defaulResult | |
} | |
} | |
export async function getRender(renderId: string, settings: Settings) { | |
if (!renderId) { | |
const error = `cannot call the rendering API without a renderId, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let renderingEngine = serverRenderingEngine | |
let openaiApiKey = serverOpenaiApiKey | |
let openaiApiModel = serverOpenaiApiModel | |
let replicateApiKey = serverReplicateApiKey | |
let replicateApiModel = serverReplicateApiModel | |
let replicateApiModelVersion = serverReplicateApiModelVersion | |
let replicateApiModelTrigger = serverReplicateApiModelTrigger | |
let huggingfaceApiKey = serverHuggingfaceApiKey | |
let huggingfaceInferenceApiModel = serverHuggingfaceInferenceApiModel | |
let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger | |
let huggingfaceApiUrl = serverHuggingfaceApiUrl | |
let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel | |
const placeholder = "<USE YOUR OWN TOKEN>" | |
if ( | |
settings.renderingModelVendor === "OPENAI" && | |
settings.openaiApiKey && | |
settings.openaiApiKey !== placeholder && | |
settings.openaiApiModel | |
) { | |
renderingEngine = "OPENAI" | |
openaiApiKey = settings.openaiApiKey | |
openaiApiModel = settings.openaiApiModel | |
} if ( | |
settings.renderingModelVendor === "REPLICATE" && | |
settings.replicateApiKey && | |
settings.replicateApiKey !== placeholder && | |
settings.replicateApiModel && | |
settings.replicateApiModelVersion | |
) { | |
renderingEngine = "REPLICATE" | |
replicateApiKey = settings.replicateApiKey | |
replicateApiModel = settings.replicateApiModel | |
replicateApiModelVersion = settings.replicateApiModelVersion | |
replicateApiModelTrigger = settings.replicateApiModelTrigger | |
} else if ( | |
settings.renderingModelVendor === "HUGGINGFACE" && | |
settings.huggingfaceApiKey && | |
settings.huggingfaceApiKey !== placeholder && | |
settings.huggingfaceInferenceApiModel | |
) { | |
// console.log("using Hugging Face using user credentials (hidden)") | |
renderingEngine = "INFERENCE_API" | |
huggingfaceApiKey = settings.huggingfaceApiKey | |
huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel | |
huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger | |
} | |
let defaulResult: RenderedScene = { | |
renderId: "", | |
status: "pending", | |
assetUrl: "", | |
alt: "", | |
maskUrl: "", | |
error: "failed to fetch the data", | |
segments: [] | |
} | |
try { | |
if (renderingEngine === "REPLICATE") { | |
if (!replicateApiKey) { | |
throw new Error(`invalid replicateApiKey, you need to configure your AUTH_REPLICATE_API_TOKEN in order to use the REPLICATE rendering engine`) | |
} | |
const res = await fetch(`https://api.replicate.com/v1/predictions/${renderId}`, { | |
method: "GET", | |
headers: { | |
Authorization: `Token ${replicateApiKey}`, | |
}, | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
// Recommendation: handle errors | |
if (res.status !== 200) { | |
// This will activate the closest `error.js` Error Boundary | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as any | |
return { | |
renderId, | |
status: response?.error ? "error" : response?.status === "succeeded" ? "completed" : "pending", | |
assetUrl: `${response?.output || ""}`, | |
alt: `${response?.input?.prompt || ""}`, | |
error: `${response?.error || ""}`, | |
maskUrl: "", | |
segments: [] | |
} as RenderedScene | |
} else { | |
const res = await fetch(`${videochainApiUrl}/render/${renderId}`, { | |
method: "GET", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
cache: 'no-store', | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as RenderedScene | |
return response | |
} | |
} catch (err) { | |
console.error(err) | |
defaulResult.status = "error" | |
defaulResult.error = `${err}` | |
return defaulResult | |
} | |
} | |
export async function upscaleImage(image: string): Promise<{ | |
assetUrl: string | |
error: string | |
}> { | |
if (!image) { | |
const error = `cannot call the rendering API without an image, aborting..` | |
console.error(error) | |
throw new Error(error) | |
} | |
let defaulResult = { | |
assetUrl: "", | |
error: "failed to fetch the data", | |
} | |
try { | |
const res = await fetch(`${videochainApiUrl}/upscale`, { | |
method: "POST", | |
headers: { | |
Accept: "application/json", | |
"Content-Type": "application/json", | |
Authorization: `Bearer ${videochainToken}`, | |
}, | |
cache: 'no-store', | |
body: JSON.stringify({ image, factor: 3 }) | |
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) | |
// next: { revalidate: 1 } | |
}) | |
if (res.status !== 200) { | |
throw new Error('Failed to fetch data') | |
} | |
const response = (await res.json()) as { | |
assetUrl: string | |
error: string | |
} | |
return response | |
} catch (err) { | |
console.error(err) | |
return defaulResult | |
} | |
} | |