codeteach commited on
Commit
5e89d35
·
verified ·
1 Parent(s): 5773fec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  from transformers import pipeline, AutoTokenizer
3
  import nltk
4
  from nltk.tokenize import sent_tokenize
 
5
 
6
  # Download NLTK data
7
  nltk.download('punkt')
@@ -23,8 +24,9 @@ summarization_models = {
23
  # Initialize tokenizer
24
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
25
 
26
- # Initialize summarization pipelines
27
- summarizers = {name: pipeline("summarization", model=model) for name, model in summarization_models.items()}
 
28
 
29
  # Initialize translation pipeline
30
  def get_translator(language):
@@ -60,11 +62,12 @@ def summarize_text(text, model_name):
60
  if len(text) < 200: # Adjust the threshold as needed
61
  print("Input text is too short for summarization. Please provide longer text.")
62
  return ""
 
63
  chunks = split_text(text)
64
  summaries = []
65
  for chunk in chunks:
66
  try:
67
- summary = summarizers[model_name](chunk, max_length=150, min_length=20, do_sample=False)[0]['summary_text']
68
  summaries.append(summary)
69
  except Exception as e:
70
  print(f"Error summarizing chunk: {chunk}\nError: {e}")
@@ -83,6 +86,7 @@ def translate_text(text, language):
83
  return text
84
 
85
  def process_text(input_text, model, language):
 
86
  print(f"Input text: {input_text[:500]}...") # Show only the first 500 characters for brevity
87
  summary = summarize_text(input_text, model)
88
  if not summary:
@@ -96,6 +100,8 @@ def process_text(input_text, model, language):
96
  print(f"Bullet Points: {bullet_points}")
97
  translated_text = translate_text(bullet_points, language)
98
  print(f"Translated Text: {translated_text}")
 
 
99
  return bullet_points, translated_text
100
 
101
  def generate_bullet_points(summary):
@@ -148,4 +154,5 @@ iface.launch()
148
 
149
 
150
 
 
151
 
 
2
  from transformers import pipeline, AutoTokenizer
3
  import nltk
4
  from nltk.tokenize import sent_tokenize
5
+ import time
6
 
7
  # Download NLTK data
8
  nltk.download('punkt')
 
24
  # Initialize tokenizer
25
  tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
26
 
27
+ # Helper function to initialize summarization pipeline
28
+ def get_summarizer(model_name):
29
+ return pipeline("summarization", model=model_name)
30
 
31
  # Initialize translation pipeline
32
  def get_translator(language):
 
62
  if len(text) < 200: # Adjust the threshold as needed
63
  print("Input text is too short for summarization. Please provide longer text.")
64
  return ""
65
+ summarizer = get_summarizer(model_name)
66
  chunks = split_text(text)
67
  summaries = []
68
  for chunk in chunks:
69
  try:
70
+ summary = summarizer(chunk, max_length=150, min_length=20, do_sample=False)[0]['summary_text']
71
  summaries.append(summary)
72
  except Exception as e:
73
  print(f"Error summarizing chunk: {chunk}\nError: {e}")
 
86
  return text
87
 
88
  def process_text(input_text, model, language):
89
+ start_time = time.time()
90
  print(f"Input text: {input_text[:500]}...") # Show only the first 500 characters for brevity
91
  summary = summarize_text(input_text, model)
92
  if not summary:
 
100
  print(f"Bullet Points: {bullet_points}")
101
  translated_text = translate_text(bullet_points, language)
102
  print(f"Translated Text: {translated_text}")
103
+ end_time = time.time()
104
+ print(f"Processing time: {end_time - start_time} seconds")
105
  return bullet_points, translated_text
106
 
107
  def generate_bullet_points(summary):
 
154
 
155
 
156
 
157
+
158