olmOCR / app.py
coderprabhat
Add olmOCR Gradio app for Hugging Face Spaces deployment
322bbf8
raw
history blame
5.86 kB
import torch
import base64
import gradio as gr
from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_no_anchoring_v4_yaml_prompt
import warnings
warnings.filterwarnings('ignore')
# Initialize the model with CPU optimizations
print("Loading model... This may take a few minutes on CPU")
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-2-7B-1025",
torch_dtype=torch.float32, # Use float32 for CPU
low_cpu_mem_usage=True, # Optimize memory usage
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
device = torch.device("cpu")
model.to(device)
print("Model loaded successfully")
def process_document(file, page_number, max_tokens):
"""
Process a PDF or image file and extract text using olmOCR
Args:
file: Uploaded file (PDF, PNG, or JPEG)
page_number: Page number to process (for PDFs)
max_tokens: Maximum number of tokens to generate
Returns:
Extracted text output and processed image
"""
if file is None:
return "Please upload a file first.", None
try:
# Handle different file types
if file.name.endswith('.pdf'):
# Render PDF page to base64 image with smaller size for CPU
image_base64 = render_pdf_to_base64png(
file.name,
page_number,
target_longest_image_dim=1024 # Reduced from 1288 for CPU
)
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
else:
# Handle image files directly
main_image = Image.open(file.name)
# Resize large images for CPU efficiency
max_size = 1024
if max(main_image.size) > max_size:
main_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
buffered = BytesIO()
main_image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Build the full prompt
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": build_no_anchoring_v4_yaml_prompt()},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
# Apply the chat template and processor
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = processor(
text=[text],
images=[main_image],
padding=True,
return_tensors="pt",
)
inputs = {key: value.to(device) for (key, value) in inputs.items()}
# Generate with CPU-optimized settings
with torch.no_grad(): # Disable gradient computation for inference
output = model.generate(
**inputs,
temperature=0.1,
max_new_tokens=max_tokens,
num_return_sequences=1,
do_sample=False, # Greedy decoding is faster on CPU
num_beams=1, # No beam search for speed
)
# Decode the output
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:]
text_output = processor.tokenizer.batch_decode(
new_tokens, skip_special_tokens=True
)
return text_output[0], main_image
except Exception as e:
return f"Error processing file: {str(e)}", None
# Create Gradio interface
with gr.Blocks(title="olmOCR - Document OCR (CPU)") as demo:
gr.Markdown("# olmOCR: Document OCR with Vision Language Models")
gr.Markdown("""
Upload a PDF or image file to extract text using the olmOCR model.
⚠️ **Note**: Running on CPU - processing may take 30-90 seconds per page.
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document (PDF, PNG, or JPEG)",
file_types=[".pdf", ".png", ".jpg", ".jpeg"]
)
page_number = gr.Slider(
minimum=1,
maximum=50,
value=1,
step=1,
label="Page Number (for PDFs)"
)
max_tokens = gr.Slider(
minimum=100,
maximum=1024, # Reduced max for CPU
value=512,
step=50,
label="Max Tokens"
)
process_btn = gr.Button("Extract Text", variant="primary")
gr.Markdown("""
### Tips for CPU Usage:
- Smaller images process faster
- First run may be slower (model loading)
- Reduce max tokens for faster results
""")
with gr.Column():
output_text = gr.Textbox(
label="Extracted Text",
lines=20,
placeholder="Extracted text will appear here...\n\nProcessing on CPU may take 30-90 seconds."
)
output_image = gr.Image(label="Processed Image")
process_btn.click(
fn=process_document,
inputs=[file_input, page_number, max_tokens],
outputs=[output_text, output_image]
)
gr.Examples(
examples=[],
inputs=[file_input]
)
if __name__ == "__main__":
demo.queue(max_size=3) # Limit queue to prevent overload
demo.launch(server_name="0.0.0.0", server_port=7860)