Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline | |
#https://huggingface.co/spaces/lvwerra/codeparrot-generation | |
title = "CodeParrot Generator 🦜" | |
description = "This is a subspace to make code generation with [CodeParrot](https://huggingface.co/lvwerra/codeparrot), it is used in a larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for model comparison. For more flexibilty in sampling, you can find another demo for CodeParrot [here](https://huggingface.co/spaces/lvwerra/codeparrot-generation)." | |
example = [ | |
["def print_hello_world():", 8, 0.6, 42], | |
["def get_file_size(filepath):", 40, 0.6, 42], | |
["def count_lines(filename):", 40, 0.6, 42], | |
["def count_words(filename):", 40, 0.6, 42]] | |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot") | |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot", low_cpu_mem_usage=True) | |
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): | |
set_seed(seed) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
generated_text = pipe(gen_prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text'] | |
return generated_text | |
iface = gr.Interface( | |
fn=code_generation, | |
inputs=[ | |
gr.Textbox(lines=10, label="Input code"), | |
gr.inputs.Slider( | |
minimum=8, | |
maximum=256, | |
step=1, | |
default=8, | |
label="Number of tokens to generate", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
default=0.6, | |
label="Temperature", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=1000, | |
step=1, | |
default=42, | |
label="Random seed to use for the generation" | |
) | |
], | |
outputs=gr.Textbox(label="Predicted code", lines=10), | |
examples=example, | |
layout="horizontal", | |
theme="peach", | |
description=description, | |
title=title | |
) | |
iface.launch() |