loubnabnl's picture
loubnabnl HF staff
update app
8164071
raw
history blame
3.69 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
import torch
import json
import pandas as pd
import requests
@st.cache(allow_output_mutation=True)
def load_tokenizer(model_ckpt):
return AutoTokenizer.from_pretrained(model_ckpt)
@st.cache(allow_output_mutation=True)
def load_model(model_ckpt):
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
return model
@st.cache()
def load_examples():
with open("examples.json", "r") as f:
examples = json.load(f)
return examples
st.set_page_config(page_icon=":laptop:", layout="wide")
st.sidebar.header("Models")
models = ["CodeParrot", "InCoder"]
selected_models = st.sidebar.multiselect("Select code generation models to compare", models, default=["CodeParrot"])
st.sidebar.header("Tasks")
tasks = [" ", "Pretraining datasets", "Model architecture", "Model evaluation", "Code generation"]
selected_task = st.sidebar.selectbox("Select a task", tasks)
if selected_task == " ":
st.title("Code Generation Models")
with open("intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
elif selected_task == "Pretraining datasets":
st.title("Pretraining datasets πŸ“š")
st.markdown("Preview of some code files from Github repositories")
df = pd.read_csv("data_preview.csv")
st.dataframe(df)
for model in selected_models:
with open(f"datasets/{model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(f"### {model}")
st.markdown(text)
elif selected_task == "Model architecture":
st.title("Model architecture πŸ”¨")
for model in selected_models:
with open(f"architectures/{model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(f"## {model}")
st.markdown(text)
if model == "InCoder":
st.image("https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png", caption="Figure 1: InCoder training", width=700)
elif selected_task == "Model evaluation":
st.title("Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
elif selected_task == "Code generation":
st.title("Code generation πŸ’»")
st.sidebar.header("Examples")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.sidebar.selectbox("Select one of the following examples", example_names)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
st.sidebar.header("Generation settings")
temperature = st.sidebar.slider("Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0)
max_new_tokens = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256)
seed = st.sidebar.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000)
gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip()
if st.button("Generate code!"):
with st.spinner("Generating code..."):
for model in selected_models:
url = f'https://hf.space/embed/loubnabnl/{model.lower()}-subspace/+/api/predict/'
r = requests.post(url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]})
generated_text = r.json()['data'][0]
st.markdown(f"{model}")
st.code(generated_text)