Spaces:
Runtime error
Runtime error
import json | |
import pandas as pd | |
import requests | |
from multiprocessing import Pool | |
from functools import partial | |
import streamlit as st | |
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code" | |
INCODER_IMG = ( | |
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png" | |
) | |
MODELS = ["CodeParrot", "InCoder"] | |
def load_examples(): | |
with open("utils/examples.json", "r") as f: | |
examples = json.load(f) | |
return examples | |
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed): | |
url = ( | |
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/" | |
) | |
r = requests.post( | |
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} | |
) | |
generated_text = r.json()["data"][0] | |
return generated_text | |
st.set_page_config(page_icon=":laptop:", layout="wide") | |
with open("utils/table_contents.txt", "r") as f: | |
contents = f.read() | |
st.sidebar.markdown(contents) | |
# Introduction | |
st.title("Code generation with π€") | |
with open("utils/intro.txt", "r") as f: | |
intro = f.read() | |
st.markdown(intro) | |
# Pretraining datasets | |
st.subheader("1 - Pretraining datasets π") | |
st.markdown( | |
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):" | |
) | |
df = pd.read_csv("utils/data_preview.csv") | |
st.dataframe(df) | |
col1, col2= st.columns([1,2]) | |
with col1: | |
selected_model = st.selectbox( | |
"Select a code generation model", MODELS, key=1 | |
) | |
with open(f"datasets/{selected_model.lower()}.txt", "r") as f: | |
text = f.read() | |
st.markdown(text) | |
# Model architecture | |
st.subheader("2 - Model architecture") | |
st.markdown("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.") | |
col1, col2= st.columns([1,2]) | |
with col1: | |
selected_model = st.selectbox( | |
"Select a code generation model", MODELS, key=2 | |
) | |
with open(f"architectures/{selected_model.lower()}.txt", "r") as f: | |
text = f.read() | |
st.markdown(text) | |
if selected_model == "InCoder": | |
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700) | |
# Model evaluation | |
st.subheader("3 - Code models evaluation π") | |
with open("evaluation/intro.txt", "r") as f: | |
intro = f.read() | |
st.markdown(intro) | |
# Code generation | |
st.subheader("4 - Code generation β¨") | |
col1, col2, col3 = st.columns([7,1,6]) | |
with col1: | |
st.markdown("**Models**") | |
selected_models = st.multiselect( | |
"Select code generation models to compare:", MODELS, default=["CodeParrot"], key=3 | |
) | |
st.markdown("**Examples**") | |
examples = load_examples() | |
example_names = [example["name"] for example in examples] | |
name2id = dict([(name, i) for i, name in enumerate(example_names)]) | |
selected_example = st.selectbox( | |
"Select one of the following examples or implement yours:", example_names | |
) | |
example_text = examples[name2id[selected_example]]["value"] | |
default_length = examples[name2id[selected_example]]["length"] | |
with col3: | |
st.markdown("**Generation settings**") | |
temperature = st.slider( | |
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0 | |
) | |
max_new_tokens = st.slider( | |
"Number of tokens to generate:", | |
value=default_length, | |
min_value=8, | |
step=8, | |
max_value=256, | |
) | |
seed = st.slider( | |
"Random seed:", value=42, min_value=0, step=1, max_value=1000 | |
) | |
gen_prompt = st.text_area( | |
"Generate code with prompt:", | |
value=example_text, | |
height=200, | |
).strip() | |
if st.button("Generate code!"): | |
with st.spinner("Generating code..."): | |
# Create a multiprocessing Pool | |
pool = Pool() | |
generate_parallel = partial( | |
generate_code, | |
gen_prompt=gen_prompt, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
seed=seed, | |
) | |
output = pool.map(generate_parallel, selected_models) | |
for i in range(len(output)): | |
st.markdown(f"**{selected_models[i]}**") | |
st.code(output[i]) | |