loubnabnl's picture
loubnabnl HF staff
update
06d2b63
raw
history blame
4 kB
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
MODELS = ["CodeParrot", "InCoder"]
@st.cache()
def load_examples():
with open("utils/examples.json", "r") as f:
examples = json.load(f)
return examples
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
url = (
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
return generated_text
#st.set_page_config(page_icon=":laptop:", layout="wide")
# Introduction
st.title("Code generation with πŸ€—")
with open("utils/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
# Pretraining datasets
st.title("1 - Pretraining datasets πŸ“š")
st.markdown(
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
)
df = pd.read_csv("utils/data_preview.csv")
st.dataframe(df)
st.header("Model")
col1, col2= st.columns([1,2])
with col1:
selected_model = st.selectbox(
"Select a code generation model", MODELS, key=1
)
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(text)
# Model architecture
st.title("2 - Model architecture")
st.markdown("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
st.header("Model")
col1, col2= st.columns([1,2])
with col1:
selected_model = st.selectbox(
"Select a code generation model", MODELS, key=2
)
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(text)
if selected_model == "InCoder":
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
# Model evaluation
st.title("3 - Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
# Code generation
st.title("4 - Code generation πŸ’»")
col1, col2 = st.columns(2)
with col1:
st.subheader("Models")
selected_models = st.multiselect(
"Select code generation models to compare", MODELS, default=["CodeParrot"], key=3
)
st.subheader("Examples")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.selectbox(
"Select one of the following examples or implement yours", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
with col2:
st.subheader("Generation settings")
temperature = st.slider(
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
)
max_new_tokens = st.slider(
"Number of tokens to generate:",
value=default_length,
min_value=8,
step=8,
max_value=256,
)
seed = st.slider(
"Random seed:", value=42, min_value=0, step=1, max_value=1000
)
gen_prompt = st.text_area(
"Generate code with prompt:",
value=example_text,
height=220,
).strip()
if st.button("Generate code!"):
with st.spinner("Generating code..."):
# Create a multiprocessing Pool
pool = Pool()
generate_parallel = partial(
generate_code,
gen_prompt=gen_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
)
output = pool.map(generate_parallel, selected_models)
for i in range(len(output)):
st.markdown(f"**{selected_models[i]}**")
st.code(output[i])