Spaces:
Running
Running
"""This is an example script to evaluate a code generation model on APPS, you can also use the APPS solutions as code generations | |
python example_script.py --model_ckpt MODEL_NAME --num_tasks 10 --difficulty introductory --n_samples 1 | |
python example_script.py --use_solutions True --num_tasks 10 --difficulty introductory --n_samples 1""" | |
import json | |
import pprint | |
from tqdm import tqdm | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed | |
from tools.utils import compute_metrics | |
def generate_prompt(sample): | |
starter_code = None if len(sample["starter_code"]) == 0 else sample["starter_code"] | |
try: | |
input_outpout = json.loads(sample["input_output"]) | |
fn_name = None if not input_outpout.get("fn_name") else input_outpout["fn_name"] | |
except ValueError: | |
fn_name = None | |
_input = "\nQUESTION:\n" | |
_input += sample["question"] | |
if starter_code: | |
_input += starter_code | |
if fn_name: | |
_input += "\nUse Standard Input format" | |
else: | |
_input += "\nUse Call-Based format" | |
_input += "\nANSWER:\n" | |
return _input | |
def complete_code(pipe, prompt, num_completions=1, max_length=256, **gen_kwargs): | |
"""Complete prompt with text generation pipeline and return num_completions.""" | |
prompt = pipe.tokenizer.eos_token + prompt | |
try: | |
code_gens = pipe(prompt, num_return_sequences=num_completions, max_length=max_length, **gen_kwargs) | |
return [code_gen["generated_text"][len(prompt):] for code_gen in code_gens] | |
except IndexError: | |
print("prompt is longer than the context size of the model, generation skipped") | |
code_gens = "" | |
return [""] | |
def make_generations(dataset, args, model, tokenizer): | |
set_seed(args.seed) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=args.device_int) | |
# Generation settings | |
gen_kwargs = { | |
"do_sample": args.do_sample, | |
"temperature": args.temperature, | |
"top_p": args.top_p, | |
"top_k": args.top_k | |
} | |
# Generate completions for evaluation set | |
n_tasks = args.num_tasks if args.num_tasks is not None else len(dataset) | |
print(f"ntasks is {n_tasks}") | |
generations = [] | |
for task in tqdm(range(n_tasks)): | |
task_generations = [] | |
prompt = generate_prompt(dataset[task]).strip() | |
task_generations.extend(complete_code(pipe, prompt, num_completions=args.n_samples, max_length=args.max_length, **gen_kwargs)) | |
generations.append([gen.replace(args.eos, "") for gen in task_generations]) | |
return generations | |
def main(args): | |
DATA_PATH = "codeparrot/apps" | |
argsdict = vars(args) | |
print(pprint.pformat(argsdict)) | |
# setup | |
print("Loading evaluation dataset...") | |
dataset = load_dataset(DATA_PATH, split="test", difficulties=[args.difficulty]) | |
if args.use_solutions: | |
print("Using data solutions as code generations") | |
model = None | |
tokenizer = None | |
generations = [] | |
for index in range(args.num_tasks+1): | |
try: | |
sol = json.loads(dataset[index]["solutions"]) | |
generations.append(sol[:args.n_solutions]) | |
except ValueError: | |
print(f"No solutions for task {index} or not enough to have {args.n_solutions} solutions") | |
break | |
else: | |
print("Loading tokenizer and model...") | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) | |
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt) | |
generations = make_generations(dataset, args, model, tokenizer) | |
metrics = compute_metrics(generations, level=args.difficulty, k_list=args.k_list, count_errors=args.count_errors, debug=args.debug) | |
print(metrics) | |
with open(args.output_file, "w") as fp: | |
json.dump(metrics, fp) | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="Testing a Language Model on APPS Python Code dataset") | |
#model and tokenizer arguments | |
parser.add_argument("--model_ckpt", default="loubnabnl/apps-1.5B-model", type=str, help="path to model checkpoint.") | |
parser.add_argument("--tokenizer", default="gpt2", type=str, help="tokenizer to use.") | |
parser.add_argument("--eos", default="<|endoftext|>", type=str, help="end of sentence token.") | |
# generation arguments | |
parser.add_argument("--do_sample", default=True, type=bool, help="do sampling in generation") | |
parser.add_argument("--temperature", default=0.2, type=float, help="temperature for sampling") | |
parser.add_argument("--top_p", default=0.95, type=float, help="top p for sampling") | |
parser.add_argument("--top_k", default=0, type=float, help="top k for sampling") | |
parser.add_argument("--max_length", default=1024, type=int, help="max length of generated code") | |
# evaluation arguments | |
parser.add_argument("--difficulty", default="all", type=str, help="difficulty level to select in the dataset from:\ | |
'all', 'introductory', 'interview' and 'competition' ") | |
parser.add_argument("--num_tasks", default=6, type=int, help="number of tasks to evaluate") | |
parser.add_argument("--use_solutions", default=False, type=bool, help="use solutions instead of generating new code") | |
parser.add_argument("--n_samples", default=1, type=int, help="number of samples to generate") | |
parser.add_argument("--n_solutions", default=1, type=int, help="number of solutions to use") | |
parser.add_argument("--k_list", default=[1, 2, 3], type=list, help="list of k values to evaluate pass@k") | |
parser.add_argument("--count_errors", default=False, type=bool, help="count compilation and runtime errors for single generations") | |
# configuration | |
parser.add_argument("--seed", default=0, type=int, help="generation seed") | |
parser.add_argument("--device_int", default=-1, type=int, help="device on which code generation is run, if positive use GPU") | |
parser.add_argument("--debug", default=False, type=bool, help="debug mode") | |
# save | |
parser.add_argument("--output_file", default="apps_metrics.json", type=str, help="output file to save the results") | |
args = parser.parse_args() | |
main(args) |