apps_metric / utils.py
loubnabnl's picture
loubnabnl HF staff
Update utils.py
0535e18
raw
history blame
26.7 kB
import itertools
import numpy as np
from typing import Dict
from datasets import load_dataset
DATASET = "codeparrot/apps"
def evaluate_generations(generations: list, level: str = "all", debug: bool = False):
"""We take the list of code generations and try to compile them
and the run their corresponding unit tests which are retrieved from the APPS dataset.
Args:
generations: list of code generations (same order as samples in APPS dataset)
level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
Returns:
results: dictionary of results, key is the problem index, value is a list of results for each generation
[-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case
"""
# generations are code generations in the same order of the dataset
apps_eval = load_dataset(DATASET, split="test", difficulties=[level])
results = {}
for index in range(len(generations)):
# code generations for problem (index)
problem_generations = generations[index]
# get corresponding samples from APPS dataset
sample = apps_eval[index]
res = []
# loop over the generations
for o_idx, o in enumerate(problem_generations):
curr_res = [-2]
try:
curr_res = run_test(sample, test=o, debug=debug)
if debug:
print(f"\nSuccessful compilation of task {index}!")
fixed = []
for e in curr_res:
if isinstance(e, np.ndarray):
e = e.item(0)
if isinstance(e, np.bool_):
e = bool(e)
fixed.append(e)
curr_res = fixed
if not np.all(curr_res):
#if debug:
print(f"Results were not True for all test cases")
except Exception as e:
if debug:
print(f"Compilation failed, test framework exception = {repr(e)}{e}\n")
break
finally:
assert isinstance(curr_res, list)
res.append(curr_res)
results[index] = res
return results
def estimate_pass_at_k(num_samples, num_correct, k):
"""Estimates pass@k of each problem and returns them in an array."""
def estimator(n: int, c: int, k: int) -> float:
"""Calculates 1 - comb(n - c, k) / comb(n, k)."""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]):
"""
Given the results evaluated against the testcases we output some statistics.
For single generations:
>>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]}
>>> get_results(example_results, count_errors=True)
Computing accuracy metrics...
number of compile errors = 1 avg = 0.2
number of runtime errors = 1 avg = 0.2
number of problems evaluated = 5
Average Accuracy : 0.3
Strict Accuracy : 0.2
{'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None}
For multiple generations:
>>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]}
>>> get_results(example_results, k_list=[1, 2])
Computing pass@k metric for multiple generations...
{'pass@1': 0.25, 'pass@2': 0.5}
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}}
"""
metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
if len(results[0]) == 1:
# for single generations we compute average accuracy and stric accuracy: original APPS metrics
print("Computing accuracy metrics...")
res = []
per_prob_res = []
all_correct = []
for index in results:
problem_results = np.asarray(results[index])
res.extend(problem_results)
per_prob_res.append(np.mean(problem_results > 0))
all_correct.append(np.all(problem_results > 0))
# we count campilation and runtime errors once per pronlem
compile_errors = len([e for e in res if -2 in e])
runtime_errors = len([e for e in res if -1 in e])
total_testcases = len(res)
if count_errors:
print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}")
print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}")
print(f"number of problems evaluated = {total_testcases}")
print(f"Average Accuracy : {np.mean(per_prob_res)}")
print(f"Strict Accuracy : {np.mean(all_correct)}")
metrics["avg_accuracy"] = np.mean(per_prob_res)
metrics["strict_accuracy"] = np.mean(all_correct)
else:
# for multiple generations we use pass@k metric used in the HumanEval benchmark
# we use strict accuracy, a generation is valid if it has to pass all the tests
print("Computing pass@k metric for multiple generations...")
# total is list with nb generations per task (task=index)
# correct is number of generations that passed all tests per task
total = []
correct = []
for index in results:
all_correct = []
for generation in results[index]:
gen = np.array(generation)
all_correct.append(np.all(gen>0))
total.append(len(all_correct))
correct.append(sum(all_correct))
total = np.array(total)
correct = np.array(correct)
ks = k_list
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}
print(pass_at_k)
metrics["pass_at_k"] = pass_at_k
return metrics
def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
"""Return metrics for the given generations.
Args:
generations: list of code generations for each problem (each generation is a list of generations)
k_list: list of k values to compute pass@k when using multiple generations
count_errors: whether to count compilation and runtime errors when using single generations
level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
Returns:
metrics: dict of metrics
Examples:
>>> import json
>>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests)
>>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r"))
>>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r"))
>>> single_solutions = [solution_sample1[:1], solution_sample2[:1]]
>>> compute_metrics(single_solutions, level="all")
Computing accuracy metrics...
number of compile errors = 0 avg = 0.0
number of runtime errors = 0 avg = 0.0
number of problems evaluated = 2
Average Accuracy : 1.0
Strict Accuracy : 1.0
{'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None}
>>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]]
>>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3])
Computing pass@k metric for multiple generations...
{'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
"""
results = evaluate_generations(generations, level=level, debug=debug)
metrics = get_results(results, count_errors=count_errors, k_list=k_list)
return metrics
#import doctest
#doctest.testmod()
#---------------------------------------------------------------------------------------------
# below is the content of testing_util.py as a temporary workaround for the relative path problem
#----------------------------------------------------------------------------------------------
import json
import sys
import faulthandler
# used for debugging to time steps
from datetime import datetime
# to run the solution files we're using a timing based approach
import signal
import numpy as np
# for capturing the stdout
from io import StringIO
# used for testing the code that reads from input
from unittest.mock import patch, mock_open
from pyext import RuntimeModule
from enum import Enum
class CODE_TYPE(Enum):
call_based = 0
standard_input = 1
# stuff for setting up signal timer
class TimeoutException(Exception):
pass
def timeout_handler(signum, frame):
print("alarm went off")
#return
raise TimeoutException
signal.signal(signal.SIGALRM, timeout_handler)
timeout = 4 # seconds
# used to capture stdout as a list
# from https://stackoverflow.com/a/16571630/6416660
# alternative use redirect_stdout() from contextlib
class Capturing(list):
def __enter__(self):
self._stdout = sys.stdout
sys.stdout = self._stringio = StringIO()
# Make closing the StringIO a no-op
self._stringio.close = lambda x: 1
return self
def __exit__(self, *args):
self.extend(self._stringio.getvalue().splitlines())
del self._stringio # free up some memory
sys.stdout = self._stdout
def run_test(sample, test=None, debug=False):
"""
if test(generated_code) is not None it'll try to run the code.
otherwise it'll just return an input and output pair.
"""
if debug:
print(f"start = {datetime.now().time()}")
try:
in_outs = json.loads(sample["input_output"])
except ValueError:
in_outs = None
if in_outs:
if in_outs.get("fn_name") is None:
which_type = CODE_TYPE.standard_input # Standard input
method_name = None
else:
which_type = CODE_TYPE.call_based # Call-based
method_name = in_outs["fn_name"]
if debug:
print(f"loaded input_output = {datetime.now().time()}")
if test is None:
return in_outs
elif test is not None:
results = []
sol = "import sys\nimport time\nimport itertools\nfrom itertools import accumulate, product, permutations, combinations\nimport collections\nfrom collections import Counter, OrderedDict, deque, defaultdict, ChainMap\nfrom functools import lru_cache\nimport math\nfrom math import sqrt, sin, cos, tan, ceil, fabs, floor, gcd, exp, log, log2\nimport fractions\nfrom typing import List, Tuple\nimport numpy as np\nimport random\nimport heapq\nfrom heapq import *\n"
if debug:
print(f"loading test code = {datetime.now().time()}")
if which_type == CODE_TYPE.call_based:
sol += test
if debug:
print(f"sol = {sol}")
signal.alarm(timeout)
try:
tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol)
if "class Solution" not in test:
tmp = tmp_sol
else:
tmp = tmp_sol.Solution()
signal.alarm(0)
except Exception as e:
signal.alarm(0)
if debug:
print(f"type 0 compilation error = {e}")
results.append(-2)
return results
signal.alarm(0)
elif which_type == CODE_TYPE.standard_input:
# sol
tmp_test = test.split("\n")
new_test = []
for x in tmp_test:
if (not x.startswith("from ")) and (not x.startswith("import ")):
new_test.append("\t" + x + "\n")
else:
new_test.append(x + "\n")
tmp_test = new_test
new_test = ""
started = False
for i in tmp_test:
if i.startswith("\t") and not started:
new_test += "stdin = sys.stdin\nstdout = sys.stdout\n"
new_test += "def code():\n"
new_test += i
started = True
elif started and ((i.startswith("from ")) or (i.startswith("import "))):
new_test += "\t" + i
else:
new_test += i
tmp_test = new_test
sol += tmp_test
if debug:
print(f"sol = {sol}")
method_name = "code"
signal.alarm(timeout)
try:
tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol)
tmp = tmp_sol
signal.alarm(0)
except Exception as e:
signal.alarm(0)
if debug:
print(f"type 1 compilation error = {e}")
results.append(-2)
return results
signal.alarm(0)
if debug:
print(f"get method = {datetime.now().time()}")
try:
method = getattr(tmp, method_name) # get_attr second arg must be str
except:
signal.alarm(0)
e = sys.exc_info()
print(f"unable to get function error = {e}")
return results
for index, inputs in enumerate(in_outs["inputs"]):
# JSON forces dictionaries to have string keys; this undoes this (assuming a singleton list)
try:
if isinstance(inputs[0], dict):
inputs = [{int(k): v for k,v in inputs[0].items()}]
except:
True
try:
if isinstance(in_outs["outputs"][index], dict):
in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index].items()}]
except:
True
try:
if isinstance(in_outs["outputs"][index][0], dict):
in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index][0].items()}]
except:
True
if debug:
print(f"time: {datetime.now().time()} testing index = {index} inputs = {inputs}, {type(inputs)}. type = {which_type}")
if which_type == CODE_TYPE.call_based: # Call-based
signal.alarm(timeout)
faulthandler.enable()
try:
output = method(*inputs)
# ground truth sequences are not tuples
if isinstance(output, tuple):
output = list(output)
tmp_result = output == in_outs["outputs"][index]
if isinstance(in_outs["outputs"][index], list) and in_outs["outputs"][index]:
tmp_result = tmp_result or (output == in_outs["outputs"][index][0])
# ground truth sequences are not tuples
try:
if isinstance(output[0], tuple):
tmp_result = tmp_result or ([list(x) for x in output] == in_outs["outputs"][index][0])
except:
True
results.append(tmp_result)
# reset the alarm
signal.alarm(0)
except Exception as e:
signal.alarm(0)
faulthandler.disable()
print(f"Standard input runtime error or time limit exceeded error = {e}")
results.append(-1)
continue
faulthandler.disable()
signal.alarm(0)
if debug:
print(f"outputs = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
elif which_type == CODE_TYPE.standard_input: # Standard input
faulthandler.enable()
signal.alarm(timeout)
passed = False
if isinstance(inputs, list):
inputs = "\n".join(inputs)
if isinstance(in_outs['outputs'][index], list):
in_outs['outputs'][index] = "\n".join(in_outs['outputs'][index])
with Capturing() as output:
try:
call_method(method, inputs)
# reset the alarm
signal.alarm(0)
passed = True
except Exception as e:
# runtime error or took too long
signal.alarm(0)
print(f"Call-based runtime error or time limit exceeded error = {repr(e)}{e}")
results.append(-1)
signal.alarm(0)
if not passed:
if debug:
nl = "\n"
if not isinstance(inputs, list):
print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
else:
print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
continue
if passed and debug:
print(f"==> output = {output}, test outputs = {in_outs['outputs'][index]}")
if custom_compare_(output, in_outs['outputs'][index]):
tmp_result = True
results.append(tmp_result)
continue
# ground truth sequences are expressed as lists not tuples
if isinstance(output, tuple):
output = list(output)
tmp_result = False
try:
tmp_result = (output == [in_outs["outputs"][index]])
if isinstance(in_outs["outputs"][index], list):
tmp_result = tmp_result or (output == in_outs["outputs"][index])
if isinstance(output[0], str):
tmp_result = tmp_result or ([e.strip() for e in output] == in_outs["outputs"][index])
except Exception as e:
if debug:
print(f"Failed check1 exception = {e}")
pass
if tmp_result == True:
results.append(tmp_result)
continue
# try one more time without \n
if isinstance(in_outs["outputs"][index], list):
for tmp_index, i in enumerate(in_outs["outputs"][index]):
in_outs["outputs"][index][tmp_index] = i.split("\n")
in_outs["outputs"][index][tmp_index] = [x.strip() for x in in_outs["outputs"][index][tmp_index] if x]
else:
in_outs["outputs"][index] = in_outs["outputs"][index].split("\n")
in_outs["outputs"][index] = list(filter(len, in_outs["outputs"][index]))
in_outs["outputs"][index] = list(map(lambda x:x.strip(), in_outs["outputs"][index]))
try:
tmp_result = (output == [in_outs["outputs"][index]])
if isinstance(in_outs["outputs"][index], list):
tmp_result = tmp_result or (output == in_outs["outputs"][index])
except Exception as e:
if debug:
print(f"Failed check2 exception = {e}")
pass
if tmp_result == True:
results.append(tmp_result)
continue
# try by converting the output into a split up list too
if isinstance(output, list):
output = list(filter(len, output))
if debug:
nl = "\n"
if not isinstance(inputs, list):
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
else:
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
if tmp_result == True:
results.append(tmp_result)
continue
try:
tmp_result = (output == [in_outs["outputs"][index]])
if isinstance(in_outs["outputs"][index], list):
tmp_result = tmp_result or (output == in_outs["outputs"][index])
except Exception as e:
if debug:
print(f"Failed check3 exception = {e}")
pass
try:
output_float = [float(e) for e in output]
gt_float = [float(e) for e in in_outs['outputs'][index]]
tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float))
except Exception as e:
pass
try:
if isinstance(output[0], list):
output_float = [float(e) for e in output[0]]
gt_float = [float(e) for e in in_outs['outputs'][index][0]]
tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float))
except Exception as e:
pass
if tmp_result == True:
results.append(tmp_result)
continue
# try by converting the stuff into split up list
if isinstance(in_outs["outputs"][index], list):
for tmp_index, i in enumerate(in_outs["outputs"][index]):
in_outs["outputs"][index][tmp_index] = set(i.split())
else:
in_outs["outputs"][index] = set(in_outs["outputs"][index].split())
try:
tmp_result = (output == in_outs["outputs"][index])
except Exception as e:
if debug:
print(f"Failed check4 exception = {e}")
continue
if tmp_result == True:
results.append(tmp_result)
continue
# try by converting the output into a split up list too
if isinstance(output, list):
for tmp_index, i in enumerate(output):
output[tmp_index] = i.split()
output = list(filter(len, output))
for tmp_index, i in enumerate(output):
output[tmp_index] = set(i)
else:
output = output.split()
output = list(filter(len, output))
output = set(output)
try:
tmp_result = (set(frozenset(s) for s in output) == set(frozenset(s) for s in in_outs["outputs"][index]))
except Exception as e:
if debug:
print(f"Failed check5 exception = {e}")
# if they are all numbers, round so that similar numbers are treated as identical
try:
tmp_result = tmp_result or (set(frozenset(round(float(t),3) for t in s) for s in output) ==\
set(frozenset(round(float(t),3) for t in s) for s in in_outs["outputs"][index]))
except Exception as e:
if debug:
print(f"Failed check6 exception = {e}")
if tmp_result == True and debug:
print("PASSED")
results.append(tmp_result)
if debug:
nl = "\n"
if not isinstance(inputs, list):
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
else:
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}")
return results
def custom_compare_(output, ground_truth):
if isinstance(output, list):
output_1 = "\n".join(output)
if stripped_string_compare(output_1, ground_truth):
return True
if isinstance(output, list):
output_2 = [o.lstrip().rstrip() for o in output]
output_2 = "\n".join(output_2)
if stripped_string_compare(output_2, ground_truth):
return True
return False
def stripped_string_compare(s1, s2):
s1 = s1.lstrip().rstrip()
s2 = s2.lstrip().rstrip()
return s1 == s2
def call_method(method, inputs):
if isinstance(inputs, list):
inputs = "\n".join(inputs)
inputs_line_iterator = iter(inputs.split("\n"))
# sys.setrecursionlimit(10000)
# @patch('builtins.input', side_effect=inputs.split("\n"))
@patch('builtins.open', mock_open(read_data=inputs))
@patch('sys.stdin', StringIO(inputs))
@patch('sys.stdin.readline', lambda *args: next(inputs_line_iterator))
@patch('sys.stdin.readlines', lambda *args: inputs.split("\n"))
@patch('sys.stdin.read', lambda *args: inputs)
# @patch('sys.stdout.write', print)
def _inner_call_method(_method):
try:
return _method()
except SystemExit as e:
pass
finally:
pass
return _inner_call_method(method)