Spaces:
Running
Running
import itertools | |
import numpy as np | |
from typing import Dict | |
from datasets import load_dataset | |
DATASET = "codeparrot/apps" | |
def evaluate_generations(generations: list, level: str = "all", debug: bool = False): | |
"""We take the list of code generations and try to compile them | |
and the run their corresponding unit tests which are retrieved from the APPS dataset. | |
Args: | |
generations: list of code generations (same order as samples in APPS dataset) | |
level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition" | |
Returns: | |
results: dictionary of results, key is the problem index, value is a list of results for each generation | |
[-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case | |
""" | |
# generations are code generations in the same order of the dataset | |
apps_eval = load_dataset(DATASET, split="test", difficulties=[level]) | |
results = {} | |
for index in range(len(generations)): | |
# code generations for problem (index) | |
problem_generations = generations[index] | |
# get corresponding samples from APPS dataset | |
sample = apps_eval[index] | |
res = [] | |
# loop over the generations | |
for o_idx, o in enumerate(problem_generations): | |
curr_res = [-2] | |
try: | |
curr_res = run_test(sample, test=o, debug=debug) | |
if debug: | |
print(f"\nSuccessful compilation of task {index}!") | |
fixed = [] | |
for e in curr_res: | |
if isinstance(e, np.ndarray): | |
e = e.item(0) | |
if isinstance(e, np.bool_): | |
e = bool(e) | |
fixed.append(e) | |
curr_res = fixed | |
if not np.all(curr_res): | |
#if debug: | |
print(f"Results were not True for all test cases") | |
except Exception as e: | |
if debug: | |
print(f"Compilation failed, test framework exception = {repr(e)}{e}\n") | |
break | |
finally: | |
assert isinstance(curr_res, list) | |
res.append(curr_res) | |
results[index] = res | |
return results | |
def estimate_pass_at_k(num_samples, num_correct, k): | |
"""Estimates pass@k of each problem and returns them in an array.""" | |
def estimator(n: int, c: int, k: int) -> float: | |
"""Calculates 1 - comb(n - c, k) / comb(n, k).""" | |
if n - c < k: | |
return 1.0 | |
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) | |
if isinstance(num_samples, int): | |
num_samples_it = itertools.repeat(num_samples, len(num_correct)) | |
else: | |
assert len(num_samples) == len(num_correct) | |
num_samples_it = iter(num_samples) | |
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]) | |
def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]): | |
""" | |
Given the results evaluated against the testcases we output some statistics. | |
For single generations: | |
>>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]} | |
>>> get_results(example_results, count_errors=True) | |
Computing accuracy metrics... | |
number of compile errors = 1 avg = 0.2 | |
number of runtime errors = 1 avg = 0.2 | |
number of problems evaluated = 5 | |
Average Accuracy : 0.3 | |
Strict Accuracy : 0.2 | |
{'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None} | |
For multiple generations: | |
>>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]} | |
>>> get_results(example_results, k_list=[1, 2]) | |
Computing pass@k metric for multiple generations... | |
{'pass@1': 0.25, 'pass@2': 0.5} | |
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}} | |
""" | |
metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None} | |
if len(results[0]) == 1: | |
# for single generations we compute average accuracy and stric accuracy: original APPS metrics | |
print("Computing accuracy metrics...") | |
res = [] | |
per_prob_res = [] | |
all_correct = [] | |
for index in results: | |
problem_results = np.asarray(results[index]) | |
res.extend(problem_results) | |
per_prob_res.append(np.mean(problem_results > 0)) | |
all_correct.append(np.all(problem_results > 0)) | |
# we count campilation and runtime errors once per pronlem | |
compile_errors = len([e for e in res if -2 in e]) | |
runtime_errors = len([e for e in res if -1 in e]) | |
total_testcases = len(res) | |
if count_errors: | |
print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}") | |
print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}") | |
print(f"number of problems evaluated = {total_testcases}") | |
print(f"Average Accuracy : {np.mean(per_prob_res)}") | |
print(f"Strict Accuracy : {np.mean(all_correct)}") | |
metrics["avg_accuracy"] = np.mean(per_prob_res) | |
metrics["strict_accuracy"] = np.mean(all_correct) | |
else: | |
# for multiple generations we use pass@k metric used in the HumanEval benchmark | |
# we use strict accuracy, a generation is valid if it has to pass all the tests | |
print("Computing pass@k metric for multiple generations...") | |
# total is list with nb generations per task (task=index) | |
# correct is number of generations that passed all tests per task | |
total = [] | |
correct = [] | |
for index in results: | |
all_correct = [] | |
for generation in results[index]: | |
gen = np.array(generation) | |
all_correct.append(np.all(gen>0)) | |
total.append(len(all_correct)) | |
correct.append(sum(all_correct)) | |
total = np.array(total) | |
correct = np.array(correct) | |
ks = k_list | |
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} | |
print(pass_at_k) | |
metrics["pass_at_k"] = pass_at_k | |
return metrics | |
def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False): | |
"""Return metrics for the given generations. | |
Args: | |
generations: list of code generations for each problem (each generation is a list of generations) | |
k_list: list of k values to compute pass@k when using multiple generations | |
count_errors: whether to count compilation and runtime errors when using single generations | |
level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition") | |
Returns: | |
metrics: dict of metrics | |
Examples: | |
>>> import json | |
>>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests) | |
>>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r")) | |
>>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r")) | |
>>> single_solutions = [solution_sample1[:1], solution_sample2[:1]] | |
>>> compute_metrics(single_solutions, level="all") | |
Computing accuracy metrics... | |
number of compile errors = 0 avg = 0.0 | |
number of runtime errors = 0 avg = 0.0 | |
number of problems evaluated = 2 | |
Average Accuracy : 1.0 | |
Strict Accuracy : 1.0 | |
{'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None} | |
>>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]] | |
>>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3]) | |
Computing pass@k metric for multiple generations... | |
{'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0} | |
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}} | |
""" | |
results = evaluate_generations(generations, level=level, debug=debug) | |
metrics = get_results(results, count_errors=count_errors, k_list=k_list) | |
return metrics | |
#import doctest | |
#doctest.testmod() | |
#--------------------------------------------------------------------------------------------- | |
# below is the content of testing_util.py as a temporary workaround for the relative path problem | |
#---------------------------------------------------------------------------------------------- | |
import json | |
import sys | |
import faulthandler | |
# used for debugging to time steps | |
from datetime import datetime | |
# to run the solution files we're using a timing based approach | |
import signal | |
import numpy as np | |
# for capturing the stdout | |
from io import StringIO | |
# used for testing the code that reads from input | |
from unittest.mock import patch, mock_open | |
from pyext import RuntimeModule | |
from enum import Enum | |
class CODE_TYPE(Enum): | |
call_based = 0 | |
standard_input = 1 | |
# stuff for setting up signal timer | |
class TimeoutException(Exception): | |
pass | |
def timeout_handler(signum, frame): | |
print("alarm went off") | |
#return | |
raise TimeoutException | |
signal.signal(signal.SIGALRM, timeout_handler) | |
timeout = 4 # seconds | |
# used to capture stdout as a list | |
# from https://stackoverflow.com/a/16571630/6416660 | |
# alternative use redirect_stdout() from contextlib | |
class Capturing(list): | |
def __enter__(self): | |
self._stdout = sys.stdout | |
sys.stdout = self._stringio = StringIO() | |
# Make closing the StringIO a no-op | |
self._stringio.close = lambda x: 1 | |
return self | |
def __exit__(self, *args): | |
self.extend(self._stringio.getvalue().splitlines()) | |
del self._stringio # free up some memory | |
sys.stdout = self._stdout | |
def run_test(sample, test=None, debug=False): | |
""" | |
if test(generated_code) is not None it'll try to run the code. | |
otherwise it'll just return an input and output pair. | |
""" | |
if debug: | |
print(f"start = {datetime.now().time()}") | |
try: | |
in_outs = json.loads(sample["input_output"]) | |
except ValueError: | |
in_outs = None | |
if in_outs: | |
if in_outs.get("fn_name") is None: | |
which_type = CODE_TYPE.standard_input # Standard input | |
method_name = None | |
else: | |
which_type = CODE_TYPE.call_based # Call-based | |
method_name = in_outs["fn_name"] | |
if debug: | |
print(f"loaded input_output = {datetime.now().time()}") | |
if test is None: | |
return in_outs | |
elif test is not None: | |
results = [] | |
sol = "import sys\nimport time\nimport itertools\nfrom itertools import accumulate, product, permutations, combinations\nimport collections\nfrom collections import Counter, OrderedDict, deque, defaultdict, ChainMap\nfrom functools import lru_cache\nimport math\nfrom math import sqrt, sin, cos, tan, ceil, fabs, floor, gcd, exp, log, log2\nimport fractions\nfrom typing import List, Tuple\nimport numpy as np\nimport random\nimport heapq\nfrom heapq import *\n" | |
if debug: | |
print(f"loading test code = {datetime.now().time()}") | |
if which_type == CODE_TYPE.call_based: | |
sol += test | |
if debug: | |
print(f"sol = {sol}") | |
signal.alarm(timeout) | |
try: | |
tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol) | |
if "class Solution" not in test: | |
tmp = tmp_sol | |
else: | |
tmp = tmp_sol.Solution() | |
signal.alarm(0) | |
except Exception as e: | |
signal.alarm(0) | |
if debug: | |
print(f"type 0 compilation error = {e}") | |
results.append(-2) | |
return results | |
signal.alarm(0) | |
elif which_type == CODE_TYPE.standard_input: | |
# sol | |
tmp_test = test.split("\n") | |
new_test = [] | |
for x in tmp_test: | |
if (not x.startswith("from ")) and (not x.startswith("import ")): | |
new_test.append("\t" + x + "\n") | |
else: | |
new_test.append(x + "\n") | |
tmp_test = new_test | |
new_test = "" | |
started = False | |
for i in tmp_test: | |
if i.startswith("\t") and not started: | |
new_test += "stdin = sys.stdin\nstdout = sys.stdout\n" | |
new_test += "def code():\n" | |
new_test += i | |
started = True | |
elif started and ((i.startswith("from ")) or (i.startswith("import "))): | |
new_test += "\t" + i | |
else: | |
new_test += i | |
tmp_test = new_test | |
sol += tmp_test | |
if debug: | |
print(f"sol = {sol}") | |
method_name = "code" | |
signal.alarm(timeout) | |
try: | |
tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol) | |
tmp = tmp_sol | |
signal.alarm(0) | |
except Exception as e: | |
signal.alarm(0) | |
if debug: | |
print(f"type 1 compilation error = {e}") | |
results.append(-2) | |
return results | |
signal.alarm(0) | |
if debug: | |
print(f"get method = {datetime.now().time()}") | |
try: | |
method = getattr(tmp, method_name) # get_attr second arg must be str | |
except: | |
signal.alarm(0) | |
e = sys.exc_info() | |
print(f"unable to get function error = {e}") | |
return results | |
for index, inputs in enumerate(in_outs["inputs"]): | |
# JSON forces dictionaries to have string keys; this undoes this (assuming a singleton list) | |
try: | |
if isinstance(inputs[0], dict): | |
inputs = [{int(k): v for k,v in inputs[0].items()}] | |
except: | |
True | |
try: | |
if isinstance(in_outs["outputs"][index], dict): | |
in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index].items()}] | |
except: | |
True | |
try: | |
if isinstance(in_outs["outputs"][index][0], dict): | |
in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index][0].items()}] | |
except: | |
True | |
if debug: | |
print(f"time: {datetime.now().time()} testing index = {index} inputs = {inputs}, {type(inputs)}. type = {which_type}") | |
if which_type == CODE_TYPE.call_based: # Call-based | |
signal.alarm(timeout) | |
faulthandler.enable() | |
try: | |
output = method(*inputs) | |
# ground truth sequences are not tuples | |
if isinstance(output, tuple): | |
output = list(output) | |
tmp_result = output == in_outs["outputs"][index] | |
if isinstance(in_outs["outputs"][index], list) and in_outs["outputs"][index]: | |
tmp_result = tmp_result or (output == in_outs["outputs"][index][0]) | |
# ground truth sequences are not tuples | |
try: | |
if isinstance(output[0], tuple): | |
tmp_result = tmp_result or ([list(x) for x in output] == in_outs["outputs"][index][0]) | |
except: | |
True | |
results.append(tmp_result) | |
# reset the alarm | |
signal.alarm(0) | |
except Exception as e: | |
signal.alarm(0) | |
faulthandler.disable() | |
print(f"Standard input runtime error or time limit exceeded error = {e}") | |
results.append(-1) | |
continue | |
faulthandler.disable() | |
signal.alarm(0) | |
if debug: | |
print(f"outputs = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
elif which_type == CODE_TYPE.standard_input: # Standard input | |
faulthandler.enable() | |
signal.alarm(timeout) | |
passed = False | |
if isinstance(inputs, list): | |
inputs = "\n".join(inputs) | |
if isinstance(in_outs['outputs'][index], list): | |
in_outs['outputs'][index] = "\n".join(in_outs['outputs'][index]) | |
with Capturing() as output: | |
try: | |
call_method(method, inputs) | |
# reset the alarm | |
signal.alarm(0) | |
passed = True | |
except Exception as e: | |
# runtime error or took too long | |
signal.alarm(0) | |
print(f"Call-based runtime error or time limit exceeded error = {repr(e)}{e}") | |
results.append(-1) | |
signal.alarm(0) | |
if not passed: | |
if debug: | |
nl = "\n" | |
if not isinstance(inputs, list): | |
print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
else: | |
print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
continue | |
if passed and debug: | |
print(f"==> output = {output}, test outputs = {in_outs['outputs'][index]}") | |
if custom_compare_(output, in_outs['outputs'][index]): | |
tmp_result = True | |
results.append(tmp_result) | |
continue | |
# ground truth sequences are expressed as lists not tuples | |
if isinstance(output, tuple): | |
output = list(output) | |
tmp_result = False | |
try: | |
tmp_result = (output == [in_outs["outputs"][index]]) | |
if isinstance(in_outs["outputs"][index], list): | |
tmp_result = tmp_result or (output == in_outs["outputs"][index]) | |
if isinstance(output[0], str): | |
tmp_result = tmp_result or ([e.strip() for e in output] == in_outs["outputs"][index]) | |
except Exception as e: | |
if debug: | |
print(f"Failed check1 exception = {e}") | |
pass | |
if tmp_result == True: | |
results.append(tmp_result) | |
continue | |
# try one more time without \n | |
if isinstance(in_outs["outputs"][index], list): | |
for tmp_index, i in enumerate(in_outs["outputs"][index]): | |
in_outs["outputs"][index][tmp_index] = i.split("\n") | |
in_outs["outputs"][index][tmp_index] = [x.strip() for x in in_outs["outputs"][index][tmp_index] if x] | |
else: | |
in_outs["outputs"][index] = in_outs["outputs"][index].split("\n") | |
in_outs["outputs"][index] = list(filter(len, in_outs["outputs"][index])) | |
in_outs["outputs"][index] = list(map(lambda x:x.strip(), in_outs["outputs"][index])) | |
try: | |
tmp_result = (output == [in_outs["outputs"][index]]) | |
if isinstance(in_outs["outputs"][index], list): | |
tmp_result = tmp_result or (output == in_outs["outputs"][index]) | |
except Exception as e: | |
if debug: | |
print(f"Failed check2 exception = {e}") | |
pass | |
if tmp_result == True: | |
results.append(tmp_result) | |
continue | |
# try by converting the output into a split up list too | |
if isinstance(output, list): | |
output = list(filter(len, output)) | |
if debug: | |
nl = "\n" | |
if not isinstance(inputs, list): | |
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
else: | |
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
if tmp_result == True: | |
results.append(tmp_result) | |
continue | |
try: | |
tmp_result = (output == [in_outs["outputs"][index]]) | |
if isinstance(in_outs["outputs"][index], list): | |
tmp_result = tmp_result or (output == in_outs["outputs"][index]) | |
except Exception as e: | |
if debug: | |
print(f"Failed check3 exception = {e}") | |
pass | |
try: | |
output_float = [float(e) for e in output] | |
gt_float = [float(e) for e in in_outs['outputs'][index]] | |
tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float)) | |
except Exception as e: | |
pass | |
try: | |
if isinstance(output[0], list): | |
output_float = [float(e) for e in output[0]] | |
gt_float = [float(e) for e in in_outs['outputs'][index][0]] | |
tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float)) | |
except Exception as e: | |
pass | |
if tmp_result == True: | |
results.append(tmp_result) | |
continue | |
# try by converting the stuff into split up list | |
if isinstance(in_outs["outputs"][index], list): | |
for tmp_index, i in enumerate(in_outs["outputs"][index]): | |
in_outs["outputs"][index][tmp_index] = set(i.split()) | |
else: | |
in_outs["outputs"][index] = set(in_outs["outputs"][index].split()) | |
try: | |
tmp_result = (output == in_outs["outputs"][index]) | |
except Exception as e: | |
if debug: | |
print(f"Failed check4 exception = {e}") | |
continue | |
if tmp_result == True: | |
results.append(tmp_result) | |
continue | |
# try by converting the output into a split up list too | |
if isinstance(output, list): | |
for tmp_index, i in enumerate(output): | |
output[tmp_index] = i.split() | |
output = list(filter(len, output)) | |
for tmp_index, i in enumerate(output): | |
output[tmp_index] = set(i) | |
else: | |
output = output.split() | |
output = list(filter(len, output)) | |
output = set(output) | |
try: | |
tmp_result = (set(frozenset(s) for s in output) == set(frozenset(s) for s in in_outs["outputs"][index])) | |
except Exception as e: | |
if debug: | |
print(f"Failed check5 exception = {e}") | |
# if they are all numbers, round so that similar numbers are treated as identical | |
try: | |
tmp_result = tmp_result or (set(frozenset(round(float(t),3) for t in s) for s in output) ==\ | |
set(frozenset(round(float(t),3) for t in s) for s in in_outs["outputs"][index])) | |
except Exception as e: | |
if debug: | |
print(f"Failed check6 exception = {e}") | |
if tmp_result == True and debug: | |
print("PASSED") | |
results.append(tmp_result) | |
if debug: | |
nl = "\n" | |
if not isinstance(inputs, list): | |
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
else: | |
print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") | |
return results | |
def custom_compare_(output, ground_truth): | |
if isinstance(output, list): | |
output_1 = "\n".join(output) | |
if stripped_string_compare(output_1, ground_truth): | |
return True | |
if isinstance(output, list): | |
output_2 = [o.lstrip().rstrip() for o in output] | |
output_2 = "\n".join(output_2) | |
if stripped_string_compare(output_2, ground_truth): | |
return True | |
return False | |
def stripped_string_compare(s1, s2): | |
s1 = s1.lstrip().rstrip() | |
s2 = s2.lstrip().rstrip() | |
return s1 == s2 | |
def call_method(method, inputs): | |
if isinstance(inputs, list): | |
inputs = "\n".join(inputs) | |
inputs_line_iterator = iter(inputs.split("\n")) | |
# sys.setrecursionlimit(10000) | |
# @patch('builtins.input', side_effect=inputs.split("\n")) | |
# @patch('sys.stdout.write', print) | |
def _inner_call_method(_method): | |
try: | |
return _method() | |
except SystemExit as e: | |
pass | |
finally: | |
pass | |
return _inner_call_method(method) | |