Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from huggingface_hub import HfApi, hf_hub_download
|
|
| 10 |
from safetensors.torch import load_file, save_file
|
| 11 |
import torch
|
| 12 |
import torch.nn.functional as F
|
|
|
|
|
|
|
| 13 |
try:
|
| 14 |
from modelscope.hub.file_download import model_file_download as ms_file_download
|
| 15 |
from modelscope.hub.api import HubApi as ModelScopeApi
|
|
@@ -17,64 +19,192 @@ try:
|
|
| 17 |
except ImportError:
|
| 18 |
MODELScope_AVAILABLE = False
|
| 19 |
|
| 20 |
-
def
|
| 21 |
-
"""
|
| 22 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
return None, None
|
| 24 |
|
| 25 |
try:
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# Perform SVD
|
| 30 |
-
U, S, Vh = torch.linalg.svd(weight_f32, full_matrices=False)
|
| 31 |
-
|
| 32 |
-
# Ensure rank doesn't exceed available singular values
|
| 33 |
-
actual_rank = min(rank, len(S))
|
| 34 |
-
if actual_rank < 8:
|
| 35 |
return None, None
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
-
print(f"
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
def extract_correction_factors(original_weight, fp8_weight):
|
| 47 |
-
"""Extract
|
| 48 |
with torch.no_grad():
|
| 49 |
-
# Convert to float32 for precision
|
| 50 |
orig = original_weight.float()
|
| 51 |
quant = fp8_weight.float()
|
| 52 |
-
|
| 53 |
-
# Compute error (what needs to be added to FP8 to recover original)
|
| 54 |
error = orig - quant
|
| 55 |
|
| 56 |
-
# Skip if error is negligible
|
| 57 |
error_norm = torch.norm(error)
|
| 58 |
orig_norm = torch.norm(orig)
|
| 59 |
-
if orig_norm > 1e-6 and error_norm / orig_norm < 0.
|
| 60 |
return None
|
| 61 |
|
| 62 |
-
# For 4D tensors (
|
| 63 |
if orig.ndim == 4:
|
| 64 |
-
# Channel dimension is typically dimension 0 (output channels)
|
| 65 |
-
channel_dim = 0
|
| 66 |
channel_mean = error.mean(dim=tuple(i for i in range(1, orig.ndim)), keepdim=True)
|
| 67 |
return channel_mean.to(original_weight.dtype)
|
| 68 |
-
# For 2D tensors, use per-row correction
|
| 69 |
elif orig.ndim == 2:
|
| 70 |
row_mean = error.mean(dim=1, keepdim=True)
|
| 71 |
return row_mean.to(original_weight.dtype)
|
| 72 |
else:
|
| 73 |
-
# For bias/batchnorm etc., use scalar correction
|
| 74 |
return error.mean().to(original_weight.dtype)
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_format, lora_rank=128, architecture="auto", progress=gr.Progress()):
|
| 77 |
-
progress(0.1, desc="Starting FP8 conversion with
|
| 78 |
try:
|
| 79 |
def read_safetensors_metadata(path):
|
| 80 |
with open(path, 'rb') as f:
|
|
@@ -89,105 +219,111 @@ def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_forma
|
|
| 89 |
state_dict = load_file(safetensors_path)
|
| 90 |
progress(0.4, desc="Loaded weights.")
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
sd_fp8 = {}
|
| 98 |
lora_weights = {}
|
| 99 |
correction_factors = {}
|
| 100 |
-
total = len(state_dict)
|
| 101 |
stats = {
|
| 102 |
-
"total_layers":
|
| 103 |
"eligible_layers": 0,
|
|
|
|
| 104 |
"processed_layers": 0,
|
| 105 |
"correction_layers": 0,
|
| 106 |
"skipped_layers": [],
|
| 107 |
-
"
|
|
|
|
|
|
|
| 108 |
}
|
| 109 |
|
| 110 |
-
|
| 111 |
-
if architecture == "auto":
|
| 112 |
-
model_keys = " ".join(state_dict.keys()).lower()
|
| 113 |
-
if "text" in model_keys or "emb" in model_keys:
|
| 114 |
-
architecture = "text_encoder"
|
| 115 |
-
elif "vae" in model_keys or "encoder" in model_keys or "decoder" in model_keys:
|
| 116 |
-
architecture = "vae"
|
| 117 |
-
elif "attn" in model_keys or "transformer" in model_keys:
|
| 118 |
-
architecture = "transformer"
|
| 119 |
-
else:
|
| 120 |
-
architecture = "all"
|
| 121 |
-
|
| 122 |
-
stats["architecture_detected"] = architecture
|
| 123 |
-
use_correction = architecture == "vae"
|
| 124 |
|
| 125 |
for i, key in enumerate(state_dict):
|
| 126 |
progress(0.4 + 0.4 * (i / total), desc=f"Processing {i+1}/{total}...")
|
| 127 |
weight = state_dict[key]
|
| 128 |
-
lower_key = key.lower()
|
| 129 |
|
| 130 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
if
|
| 138 |
-
|
| 139 |
-
elif architecture == "transformer":
|
| 140 |
-
should_process = "attn" in lower_key or "transformer" in lower_key or "mlp" in lower_key
|
| 141 |
-
elif architecture == "vae":
|
| 142 |
-
should_process = "vae" in lower_key or "decoder" in lower_key or "encoder" in lower_key or "conv" in lower_key
|
| 143 |
-
elif architecture == "all":
|
| 144 |
-
should_process = True
|
| 145 |
-
else: # "auto" fallback
|
| 146 |
-
should_process = True
|
| 147 |
|
| 148 |
if should_process:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
stats["correction_layers"] += 1
|
| 155 |
-
stats["processed_layers"] += 1
|
| 156 |
-
else:
|
| 157 |
-
# For other architectures, use LoRA
|
| 158 |
-
stats["eligible_layers"] += 1
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
try:
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
| 167 |
|
| 168 |
-
A, B = low_rank_decomposition(weight, rank=adjusted_rank)
|
| 169 |
if A is not None and B is not None:
|
| 170 |
-
lora_weights[f"lora_A.{key}"] = A
|
| 171 |
-
lora_weights[f"lora_B.{key}"] = B
|
| 172 |
stats["processed_layers"] += 1
|
| 173 |
else:
|
| 174 |
stats["skipped_layers"].append(f"{key}: decomposition failed")
|
| 175 |
except Exception as e:
|
| 176 |
stats["skipped_layers"].append(f"{key}: error - {str(e)}")
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
stats["skipped_layers"].append(f"{key}: 4D tensor skipped for non-VAE architecture")
|
| 180 |
else:
|
| 181 |
sd_fp8[key] = weight
|
| 182 |
stats["skipped_layers"].append(f"{key}: non-float dtype")
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
|
| 185 |
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
|
| 186 |
|
| 187 |
-
# Save FP8 model
|
| 188 |
save_file(sd_fp8, fp8_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
|
| 189 |
|
| 190 |
-
# Save
|
| 191 |
if lora_weights:
|
| 192 |
lora_path = os.path.join(output_dir, f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors")
|
| 193 |
lora_metadata = {
|
|
@@ -199,7 +335,6 @@ def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_forma
|
|
| 199 |
}
|
| 200 |
save_file(lora_weights, lora_path, metadata=lora_metadata)
|
| 201 |
|
| 202 |
-
# Save correction factors if any were generated (for VAE)
|
| 203 |
if correction_factors:
|
| 204 |
correction_path = os.path.join(output_dir, f"{base_name}-correction-{architecture}.safetensors")
|
| 205 |
correction_metadata = {
|
|
@@ -210,24 +345,25 @@ def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_forma
|
|
| 210 |
}
|
| 211 |
save_file(correction_factors, correction_path, metadata=correction_metadata)
|
| 212 |
|
| 213 |
-
progress(0.9, desc="Saved FP8 and
|
| 214 |
-
progress(1.0, desc="β
FP8 +
|
| 215 |
|
| 216 |
stats_msg = f"FP8 ({fp8_format}) with precision recovery saved.\n"
|
| 217 |
-
stats_msg += f"Architecture
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
if
|
| 220 |
stats_msg += f"Correction factors generated for {stats['correction_layers']} layers."
|
| 221 |
else:
|
| 222 |
-
stats_msg += f"
|
| 223 |
|
| 224 |
if stats['processed_layers'] == 0 and stats['correction_layers'] == 0:
|
| 225 |
-
stats_msg += "\nβ οΈ No precision recovery weights were generated.
|
| 226 |
|
| 227 |
return True, stats_msg, stats
|
| 228 |
|
| 229 |
except Exception as e:
|
| 230 |
-
import traceback
|
| 231 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
| 232 |
return False, error_msg, None
|
| 233 |
|
|
@@ -336,12 +472,13 @@ def process_and_upload_fp8(
|
|
| 336 |
|
| 337 |
# Determine which precision recovery file was generated
|
| 338 |
precision_recovery_file = ""
|
| 339 |
-
precision_recovery_type = "
|
| 340 |
-
if stats.get("correction_layers", 0) > 0:
|
| 341 |
precision_recovery_file = f"{base_name}-correction-{architecture}.safetensors"
|
| 342 |
precision_recovery_type = "Correction Factors"
|
| 343 |
-
elif stats.get("processed_layers", 0) > 0:
|
| 344 |
precision_recovery_file = f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors"
|
|
|
|
| 345 |
|
| 346 |
readme = f"""---
|
| 347 |
library_name: diffusers
|
|
@@ -358,42 +495,51 @@ tags:
|
|
| 358 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 359 |
- **Architecture**: {architecture}
|
| 360 |
- **Precision Recovery Type**: {precision_recovery_type}
|
| 361 |
-
- **Precision Recovery File**: `{precision_recovery_file}`
|
| 362 |
- **FP8 File**: `{fp8_filename}`
|
|
|
|
| 363 |
## Usage (Inference)
|
| 364 |
```python
|
| 365 |
from safetensors.torch import load_file
|
| 366 |
import torch
|
|
|
|
| 367 |
# Load FP8 model
|
| 368 |
fp8_state = load_file("{fp8_filename}")
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
# Reconstruct high-precision weights
|
| 372 |
reconstructed = {{}}
|
| 373 |
for key in fp8_state:
|
| 374 |
-
|
|
|
|
|
|
|
| 375 |
if recovery_state:
|
| 376 |
# For LoRA approach
|
| 377 |
-
if "lora_A" in recovery_state:
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
reconstructed[key] = fp8_weight + lora_weight
|
| 383 |
-
else:
|
| 384 |
-
reconstructed[key] = fp8_weight
|
| 385 |
# For correction factor approach
|
| 386 |
elif f"correction.{{key}}" in recovery_state:
|
| 387 |
correction = recovery_state[f"correction.{{key}}"].to(torch.float32)
|
| 388 |
-
reconstructed[key] =
|
| 389 |
else:
|
| 390 |
-
reconstructed[key] =
|
| 391 |
else:
|
| 392 |
-
reconstructed[key] =
|
|
|
|
|
|
|
| 393 |
```
|
| 394 |
-
|
|
|
|
|
|
|
| 395 |
"""
|
| 396 |
-
|
| 397 |
with open(os.path.join(output_dir, "README.md"), "w") as f:
|
| 398 |
f.write(readme)
|
| 399 |
|
|
@@ -407,17 +553,22 @@ for key in fp8_state:
|
|
| 407 |
)
|
| 408 |
|
| 409 |
progress(1.0, desc="β
Done!")
|
|
|
|
| 410 |
result_html = f"""
|
| 411 |
β
Success!
|
| 412 |
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
|
| 413 |
-
Includes: FP8 model + precision recovery ({precision_recovery_type}).
|
|
|
|
| 414 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
return gr.HTML(result_html), "β
FP8 + precision recovery upload successful!", msg
|
| 416 |
|
| 417 |
except Exception as e:
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
return None, error_details, ""
|
| 421 |
|
| 422 |
finally:
|
| 423 |
if temp_dir:
|
|
@@ -425,8 +576,8 @@ Includes: FP8 model + precision recovery ({precision_recovery_type}).
|
|
| 425 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 426 |
|
| 427 |
with gr.Blocks(title="FP8 + Precision Recovery Extractor") as demo:
|
| 428 |
-
gr.Markdown("# π FP8
|
| 429 |
-
gr.Markdown("Convert
|
| 430 |
|
| 431 |
with gr.Row():
|
| 432 |
with gr.Column():
|
|
@@ -436,13 +587,15 @@ with gr.Blocks(title="FP8 + Precision Recovery Extractor") as demo:
|
|
| 436 |
|
| 437 |
with gr.Accordion("Advanced Settings", open=True):
|
| 438 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 439 |
-
lora_rank = gr.Slider(minimum=8, maximum=256, step=8, value=128,
|
|
|
|
| 440 |
architecture = gr.Dropdown(
|
| 441 |
choices=[
|
| 442 |
("Auto-detect architecture", "auto"),
|
| 443 |
("Text Encoder (LoRA)", "text_encoder"),
|
| 444 |
("Transformer blocks (LoRA)", "transformer"),
|
| 445 |
("VAE (Correction Factors)", "vae"),
|
|
|
|
| 446 |
("All layers (LoRA where applicable)", "all")
|
| 447 |
],
|
| 448 |
value="auto",
|
|
@@ -451,11 +604,12 @@ with gr.Blocks(title="FP8 + Precision Recovery Extractor") as demo:
|
|
| 451 |
|
| 452 |
with gr.Accordion("Authentication", open=False):
|
| 453 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
| 454 |
-
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password",
|
|
|
|
| 455 |
|
| 456 |
with gr.Column():
|
| 457 |
target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
|
| 458 |
-
new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8")
|
| 459 |
private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
|
| 460 |
|
| 461 |
status_output = gr.Markdown()
|
|
@@ -485,31 +639,39 @@ with gr.Blocks(title="FP8 + Precision Recovery Extractor") as demo:
|
|
| 485 |
|
| 486 |
gr.Examples(
|
| 487 |
examples=[
|
| 488 |
-
["huggingface", "https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder",
|
| 489 |
-
|
| 490 |
-
["huggingface", "https://huggingface.co/
|
|
|
|
|
|
|
|
|
|
| 491 |
],
|
| 492 |
-
inputs=[source_type, repo_url, safetensors_filename, fp8_format, lora_rank, architecture
|
| 493 |
label="Example Conversions"
|
| 494 |
)
|
| 495 |
|
| 496 |
gr.Markdown("""
|
| 497 |
-
##
|
|
|
|
|
|
|
| 498 |
|
| 499 |
-
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
-
|
| 502 |
-
- Higher ranks (96-128) recommended for text encoders
|
| 503 |
-
- Medium ranks (64-128) for transformers
|
| 504 |
|
| 505 |
-
- **
|
| 506 |
-
|
| 507 |
-
|
|
|
|
| 508 |
|
| 509 |
-
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
|
|
|
| 513 |
""")
|
| 514 |
|
| 515 |
demo.launch()
|
|
|
|
| 10 |
from safetensors.torch import load_file, save_file
|
| 11 |
import torch
|
| 12 |
import torch.nn.functional as F
|
| 13 |
+
import traceback
|
| 14 |
+
import math
|
| 15 |
try:
|
| 16 |
from modelscope.hub.file_download import model_file_download as ms_file_download
|
| 17 |
from modelscope.hub.api import HubApi as ModelScopeApi
|
|
|
|
| 19 |
except ImportError:
|
| 20 |
MODELScope_AVAILABLE = False
|
| 21 |
|
| 22 |
+
def get_fp8_dtype(fp8_format):
|
| 23 |
+
"""Get torch FP8 dtype."""
|
| 24 |
+
if fp8_format == "e5m2":
|
| 25 |
+
return torch.float8_e5m2
|
| 26 |
+
else:
|
| 27 |
+
return torch.float8_e4m3fn
|
| 28 |
+
|
| 29 |
+
def quantize_and_get_error(weight, fp8_dtype):
|
| 30 |
+
"""Quantize weight to FP8 and return both quantized weight and error."""
|
| 31 |
+
weight_fp8 = weight.to(fp8_dtype)
|
| 32 |
+
weight_dequantized = weight_fp8.to(weight.dtype)
|
| 33 |
+
error = weight - weight_dequantized
|
| 34 |
+
return weight_fp8, error
|
| 35 |
+
|
| 36 |
+
def low_rank_decomposition_error(error_tensor, rank=32, min_error_threshold=1e-6):
|
| 37 |
+
"""Decompose error tensor with proper rank reduction."""
|
| 38 |
+
if error_tensor.ndim not in [2, 4]:
|
| 39 |
return None, None
|
| 40 |
|
| 41 |
try:
|
| 42 |
+
# Calculate error magnitude
|
| 43 |
+
error_norm = torch.norm(error_tensor.float())
|
| 44 |
+
if error_norm < min_error_threshold:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return None, None
|
| 46 |
|
| 47 |
+
# For 2D tensors (linear layers)
|
| 48 |
+
if error_tensor.ndim == 2:
|
| 49 |
+
U, S, Vh = torch.linalg.svd(error_tensor.float(), full_matrices=False)
|
| 50 |
+
|
| 51 |
+
# Calculate rank based on variance explained (keep 95% of error)
|
| 52 |
+
total_variance = torch.sum(S ** 2)
|
| 53 |
+
cumulative = torch.cumsum(S ** 2, dim=0)
|
| 54 |
+
keep_components = torch.sum(cumulative <= 0.95 * total_variance).item() + 1
|
| 55 |
+
|
| 56 |
+
# Limit rank to much smaller than original
|
| 57 |
+
max_rank = min(error_tensor.shape)
|
| 58 |
+
actual_rank = min(rank, keep_components, max_rank // 2)
|
| 59 |
+
|
| 60 |
+
if actual_rank < 2:
|
| 61 |
+
return None, None
|
| 62 |
+
|
| 63 |
+
A = Vh[:actual_rank, :].contiguous()
|
| 64 |
+
B = U[:, :actual_rank] @ torch.diag(S[:actual_rank]).contiguous()
|
| 65 |
+
|
| 66 |
+
return A, B
|
| 67 |
|
| 68 |
+
# For 4D convolutions
|
| 69 |
+
elif error_tensor.ndim == 4:
|
| 70 |
+
out_ch, in_ch, kH, kW = error_tensor.shape
|
| 71 |
+
|
| 72 |
+
# Reshape to 2D for decomposition
|
| 73 |
+
error_2d = error_tensor.view(out_ch, in_ch * kH * kW)
|
| 74 |
+
U, S, Vh = torch.linalg.svd(error_2d.float(), full_matrices=False)
|
| 75 |
+
|
| 76 |
+
# Calculate rank based on variance explained (90% for conv)
|
| 77 |
+
total_variance = torch.sum(S ** 2)
|
| 78 |
+
cumulative = torch.cumsum(S ** 2, dim=0)
|
| 79 |
+
keep_components = torch.sum(cumulative <= 0.90 * total_variance).item() + 1
|
| 80 |
+
|
| 81 |
+
# Use even lower rank for conv
|
| 82 |
+
max_rank = min(error_2d.shape)
|
| 83 |
+
actual_rank = min(rank // 2, keep_components, max_rank // 4)
|
| 84 |
+
|
| 85 |
+
if actual_rank < 2:
|
| 86 |
+
return None, None
|
| 87 |
+
|
| 88 |
+
A = Vh[:actual_rank, :].contiguous()
|
| 89 |
+
B = U[:, :actual_rank] @ torch.diag(S[:actual_rank]).contiguous()
|
| 90 |
+
|
| 91 |
+
# Reshape back for convolutional format
|
| 92 |
+
if kH == 1 and kW == 1:
|
| 93 |
+
B = B.view(out_ch, actual_rank, 1, 1)
|
| 94 |
+
A = A.view(actual_rank, in_ch, 1, 1)
|
| 95 |
+
else:
|
| 96 |
+
B = B.view(out_ch, actual_rank, 1, 1)
|
| 97 |
+
A = A.view(actual_rank, in_ch, kH, kW)
|
| 98 |
+
|
| 99 |
+
return A, B
|
| 100 |
+
|
| 101 |
except Exception as e:
|
| 102 |
+
print(f"Error decomposition failed: {e}")
|
| 103 |
+
|
| 104 |
+
return None, None
|
| 105 |
|
| 106 |
def extract_correction_factors(original_weight, fp8_weight):
|
| 107 |
+
"""Extract simple correction factors for VAE."""
|
| 108 |
with torch.no_grad():
|
|
|
|
| 109 |
orig = original_weight.float()
|
| 110 |
quant = fp8_weight.float()
|
|
|
|
|
|
|
| 111 |
error = orig - quant
|
| 112 |
|
|
|
|
| 113 |
error_norm = torch.norm(error)
|
| 114 |
orig_norm = torch.norm(orig)
|
| 115 |
+
if orig_norm > 1e-6 and error_norm / orig_norm < 0.001:
|
| 116 |
return None
|
| 117 |
|
| 118 |
+
# For 4D tensors (VAE), compute per-channel correction
|
| 119 |
if orig.ndim == 4:
|
|
|
|
|
|
|
| 120 |
channel_mean = error.mean(dim=tuple(i for i in range(1, orig.ndim)), keepdim=True)
|
| 121 |
return channel_mean.to(original_weight.dtype)
|
|
|
|
| 122 |
elif orig.ndim == 2:
|
| 123 |
row_mean = error.mean(dim=1, keepdim=True)
|
| 124 |
return row_mean.to(original_weight.dtype)
|
| 125 |
else:
|
|
|
|
| 126 |
return error.mean().to(original_weight.dtype)
|
| 127 |
|
| 128 |
+
def get_architecture_settings(architecture, base_rank):
|
| 129 |
+
"""Get optimal settings for different architectures."""
|
| 130 |
+
settings = {
|
| 131 |
+
"text_encoder": {
|
| 132 |
+
"rank": base_rank,
|
| 133 |
+
"error_threshold": 5e-5,
|
| 134 |
+
"min_rank": 8,
|
| 135 |
+
"max_rank_factor": 0.4,
|
| 136 |
+
"method": "lora"
|
| 137 |
+
},
|
| 138 |
+
"transformer": {
|
| 139 |
+
"rank": base_rank,
|
| 140 |
+
"error_threshold": 1e-5,
|
| 141 |
+
"min_rank": 12,
|
| 142 |
+
"max_rank_factor": 0.35,
|
| 143 |
+
"method": "lora"
|
| 144 |
+
},
|
| 145 |
+
"vae": {
|
| 146 |
+
"rank": base_rank // 2,
|
| 147 |
+
"error_threshold": 1e-4,
|
| 148 |
+
"min_rank": 4,
|
| 149 |
+
"max_rank_factor": 0.3,
|
| 150 |
+
"method": "correction"
|
| 151 |
+
},
|
| 152 |
+
"unet_conv": {
|
| 153 |
+
"rank": base_rank // 3,
|
| 154 |
+
"error_threshold": 2e-5,
|
| 155 |
+
"min_rank": 8,
|
| 156 |
+
"max_rank_factor": 0.25,
|
| 157 |
+
"method": "lora"
|
| 158 |
+
},
|
| 159 |
+
"auto": {
|
| 160 |
+
"rank": base_rank,
|
| 161 |
+
"error_threshold": 1e-5,
|
| 162 |
+
"min_rank": 8,
|
| 163 |
+
"max_rank_factor": 0.3,
|
| 164 |
+
"method": "lora"
|
| 165 |
+
},
|
| 166 |
+
"all": {
|
| 167 |
+
"rank": base_rank,
|
| 168 |
+
"error_threshold": 1e-5,
|
| 169 |
+
"min_rank": 8,
|
| 170 |
+
"max_rank_factor": 0.3,
|
| 171 |
+
"method": "lora"
|
| 172 |
+
}
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
return settings.get(architecture, settings["auto"])
|
| 176 |
+
|
| 177 |
+
def should_process_layer(key, weight, architecture):
|
| 178 |
+
"""Determine if layer should be processed for LoRA/correction."""
|
| 179 |
+
lower_key = key.lower()
|
| 180 |
+
|
| 181 |
+
# Skip biases and normalization layers
|
| 182 |
+
if 'bias' in key or 'norm' in key.lower() or 'bn' in key.lower():
|
| 183 |
+
return False
|
| 184 |
+
|
| 185 |
+
if weight.numel() < 100:
|
| 186 |
+
return False
|
| 187 |
+
|
| 188 |
+
# Architecture-specific filtering
|
| 189 |
+
if architecture == "text_encoder":
|
| 190 |
+
return ('text' in lower_key or 'emb' in lower_key or
|
| 191 |
+
'encoder' in lower_key or 'attn' in lower_key)
|
| 192 |
+
elif architecture == "transformer":
|
| 193 |
+
return ('attn' in lower_key or 'transformer' in lower_key or
|
| 194 |
+
'mlp' in lower_key or 'to_out' in lower_key)
|
| 195 |
+
elif architecture == "vae":
|
| 196 |
+
return ('vae' in lower_key or 'encoder' in lower_key or
|
| 197 |
+
'decoder' in lower_key or 'conv' in lower_key)
|
| 198 |
+
elif architecture == "unet_conv":
|
| 199 |
+
return ('conv' in lower_key or 'resnet' in lower_key or
|
| 200 |
+
'downsample' in lower_key or 'upsample' in lower_key)
|
| 201 |
+
elif architecture in ["all", "auto"]:
|
| 202 |
+
return True
|
| 203 |
+
|
| 204 |
+
return False
|
| 205 |
+
|
| 206 |
def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_format, lora_rank=128, architecture="auto", progress=gr.Progress()):
|
| 207 |
+
progress(0.1, desc="Starting FP8 conversion with error recovery...")
|
| 208 |
try:
|
| 209 |
def read_safetensors_metadata(path):
|
| 210 |
with open(path, 'rb') as f:
|
|
|
|
| 219 |
state_dict = load_file(safetensors_path)
|
| 220 |
progress(0.4, desc="Loaded weights.")
|
| 221 |
|
| 222 |
+
# Auto-detect architecture if needed
|
| 223 |
+
if architecture == "auto":
|
| 224 |
+
model_keys = " ".join(state_dict.keys()).lower()
|
| 225 |
+
if "vae" in model_keys or ("encoder" in model_keys and "decoder" in model_keys):
|
| 226 |
+
architecture = "vae"
|
| 227 |
+
elif "text" in model_keys or "emb" in model_keys:
|
| 228 |
+
architecture = "text_encoder"
|
| 229 |
+
elif "attn" in model_keys or "transformer" in model_keys:
|
| 230 |
+
architecture = "transformer"
|
| 231 |
+
elif "conv" in model_keys or "resnet" in model_keys:
|
| 232 |
+
architecture = "unet_conv"
|
| 233 |
+
else:
|
| 234 |
+
architecture = "all"
|
| 235 |
+
|
| 236 |
+
settings = get_architecture_settings(architecture, lora_rank)
|
| 237 |
+
fp8_dtype = get_fp8_dtype(fp8_format)
|
| 238 |
|
| 239 |
sd_fp8 = {}
|
| 240 |
lora_weights = {}
|
| 241 |
correction_factors = {}
|
|
|
|
| 242 |
stats = {
|
| 243 |
+
"total_layers": len(state_dict),
|
| 244 |
"eligible_layers": 0,
|
| 245 |
+
"layers_with_error": 0,
|
| 246 |
"processed_layers": 0,
|
| 247 |
"correction_layers": 0,
|
| 248 |
"skipped_layers": [],
|
| 249 |
+
"architecture": architecture,
|
| 250 |
+
"method": settings["method"],
|
| 251 |
+
"error_magnitudes": []
|
| 252 |
}
|
| 253 |
|
| 254 |
+
total = len(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
for i, key in enumerate(state_dict):
|
| 257 |
progress(0.4 + 0.4 * (i / total), desc=f"Processing {i+1}/{total}...")
|
| 258 |
weight = state_dict[key]
|
|
|
|
| 259 |
|
| 260 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 261 |
+
# Quantize to FP8 and calculate error
|
| 262 |
+
weight_fp8, error = quantize_and_get_error(weight, fp8_dtype)
|
| 263 |
+
sd_fp8[key] = weight_fp8
|
| 264 |
+
|
| 265 |
+
# Calculate error magnitude
|
| 266 |
+
error_norm = torch.norm(error.float())
|
| 267 |
+
weight_norm = torch.norm(weight.float())
|
| 268 |
+
relative_error = (error_norm / weight_norm).item() if weight_norm > 0 else 0
|
| 269 |
|
| 270 |
+
stats["error_magnitudes"].append({
|
| 271 |
+
"key": key,
|
| 272 |
+
"relative_error": relative_error
|
| 273 |
+
})
|
| 274 |
|
| 275 |
+
# Check if layer should be processed
|
| 276 |
+
should_process = should_process_layer(key, weight, architecture)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
if should_process:
|
| 279 |
+
stats["eligible_layers"] += 1
|
| 280 |
+
|
| 281 |
+
# Only process if error is significant
|
| 282 |
+
if relative_error > settings["error_threshold"]:
|
| 283 |
+
stats["layers_with_error"] += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
+
if settings["method"] == "correction":
|
| 286 |
+
# Use correction factors for VAE
|
| 287 |
+
correction = extract_correction_factors(weight, weight_fp8)
|
| 288 |
+
if correction is not None:
|
| 289 |
+
correction_factors[f"correction.{key}"] = correction
|
| 290 |
+
stats["correction_layers"] += 1
|
| 291 |
+
stats["processed_layers"] += 1
|
| 292 |
+
else:
|
| 293 |
+
# Use LoRA decomposition for other architectures
|
| 294 |
try:
|
| 295 |
+
A, B = low_rank_decomposition_error(
|
| 296 |
+
error,
|
| 297 |
+
rank=settings["rank"],
|
| 298 |
+
min_error_threshold=settings["error_threshold"]
|
| 299 |
+
)
|
| 300 |
|
|
|
|
| 301 |
if A is not None and B is not None:
|
| 302 |
+
lora_weights[f"lora_A.{key}"] = A.to(torch.float16)
|
| 303 |
+
lora_weights[f"lora_B.{key}"] = B.to(torch.float16)
|
| 304 |
stats["processed_layers"] += 1
|
| 305 |
else:
|
| 306 |
stats["skipped_layers"].append(f"{key}: decomposition failed")
|
| 307 |
except Exception as e:
|
| 308 |
stats["skipped_layers"].append(f"{key}: error - {str(e)}")
|
| 309 |
+
else:
|
| 310 |
+
stats["skipped_layers"].append(f"{key}: error too small ({relative_error:.6f})")
|
|
|
|
| 311 |
else:
|
| 312 |
sd_fp8[key] = weight
|
| 313 |
stats["skipped_layers"].append(f"{key}: non-float dtype")
|
| 314 |
|
| 315 |
+
# Calculate average error
|
| 316 |
+
if stats["error_magnitudes"]:
|
| 317 |
+
errors = [e["relative_error"] for e in stats["error_magnitudes"]]
|
| 318 |
+
stats["avg_error"] = sum(errors) / len(errors) if errors else 0
|
| 319 |
+
stats["max_error"] = max(errors) if errors else 0
|
| 320 |
+
|
| 321 |
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
|
| 322 |
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
|
| 323 |
|
|
|
|
| 324 |
save_file(sd_fp8, fp8_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
|
| 325 |
|
| 326 |
+
# Save precision recovery weights
|
| 327 |
if lora_weights:
|
| 328 |
lora_path = os.path.join(output_dir, f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors")
|
| 329 |
lora_metadata = {
|
|
|
|
| 335 |
}
|
| 336 |
save_file(lora_weights, lora_path, metadata=lora_metadata)
|
| 337 |
|
|
|
|
| 338 |
if correction_factors:
|
| 339 |
correction_path = os.path.join(output_dir, f"{base_name}-correction-{architecture}.safetensors")
|
| 340 |
correction_metadata = {
|
|
|
|
| 345 |
}
|
| 346 |
save_file(correction_factors, correction_path, metadata=correction_metadata)
|
| 347 |
|
| 348 |
+
progress(0.9, desc="Saved FP8 and precision recovery files.")
|
| 349 |
+
progress(1.0, desc="β
FP8 + precision recovery extraction complete!")
|
| 350 |
|
| 351 |
stats_msg = f"FP8 ({fp8_format}) with precision recovery saved.\n"
|
| 352 |
+
stats_msg += f"Architecture: {architecture}\n"
|
| 353 |
+
stats_msg += f"Method: {settings['method']}\n"
|
| 354 |
+
stats_msg += f"Average quantization error: {stats.get('avg_error', 0):.6f}\n"
|
| 355 |
|
| 356 |
+
if settings["method"] == "correction":
|
| 357 |
stats_msg += f"Correction factors generated for {stats['correction_layers']} layers."
|
| 358 |
else:
|
| 359 |
+
stats_msg += f"LoRA generated for {stats['processed_layers']}/{stats['eligible_layers']} eligible layers (rank {lora_rank})."
|
| 360 |
|
| 361 |
if stats['processed_layers'] == 0 and stats['correction_layers'] == 0:
|
| 362 |
+
stats_msg += "\nβ οΈ No precision recovery weights were generated. FP8 quantization error may be too small."
|
| 363 |
|
| 364 |
return True, stats_msg, stats
|
| 365 |
|
| 366 |
except Exception as e:
|
|
|
|
| 367 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
| 368 |
return False, error_msg, None
|
| 369 |
|
|
|
|
| 472 |
|
| 473 |
# Determine which precision recovery file was generated
|
| 474 |
precision_recovery_file = ""
|
| 475 |
+
precision_recovery_type = ""
|
| 476 |
+
if stats.get("method") == "correction" and stats.get("correction_layers", 0) > 0:
|
| 477 |
precision_recovery_file = f"{base_name}-correction-{architecture}.safetensors"
|
| 478 |
precision_recovery_type = "Correction Factors"
|
| 479 |
+
elif stats.get("method") == "lora" and stats.get("processed_layers", 0) > 0:
|
| 480 |
precision_recovery_file = f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors"
|
| 481 |
+
precision_recovery_type = "LoRA"
|
| 482 |
|
| 483 |
readme = f"""---
|
| 484 |
library_name: diffusers
|
|
|
|
| 495 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 496 |
- **Architecture**: {architecture}
|
| 497 |
- **Precision Recovery Type**: {precision_recovery_type}
|
| 498 |
+
- **Precision Recovery File**: `{precision_recovery_file}` if available
|
| 499 |
- **FP8 File**: `{fp8_filename}`
|
| 500 |
+
|
| 501 |
## Usage (Inference)
|
| 502 |
```python
|
| 503 |
from safetensors.torch import load_file
|
| 504 |
import torch
|
| 505 |
+
|
| 506 |
# Load FP8 model
|
| 507 |
fp8_state = load_file("{fp8_filename}")
|
| 508 |
+
|
| 509 |
+
# Load precision recovery file if available
|
| 510 |
+
recovery_state = {{}}
|
| 511 |
+
if "{precision_recovery_file}":
|
| 512 |
+
recovery_state = load_file("{precision_recovery_file}")
|
| 513 |
+
|
| 514 |
# Reconstruct high-precision weights
|
| 515 |
reconstructed = {{}}
|
| 516 |
for key in fp8_state:
|
| 517 |
+
# Dequantize FP8 to target precision
|
| 518 |
+
fp_weight = fp8_state[key].to(torch.float32)
|
| 519 |
+
|
| 520 |
if recovery_state:
|
| 521 |
# For LoRA approach
|
| 522 |
+
if f"lora_A.{{key}}" in recovery_state and f"lora_B.{{key}}" in recovery_state:
|
| 523 |
+
A = recovery_state[f"lora_A.{{key}}"].to(torch.float32)
|
| 524 |
+
B = recovery_state[f"lora_B.{{key}}"].to(torch.float32)
|
| 525 |
+
error_correction = B @ A
|
| 526 |
+
reconstructed[key] = fp_weight + error_correction
|
|
|
|
|
|
|
|
|
|
| 527 |
# For correction factor approach
|
| 528 |
elif f"correction.{{key}}" in recovery_state:
|
| 529 |
correction = recovery_state[f"correction.{{key}}"].to(torch.float32)
|
| 530 |
+
reconstructed[key] = fp_weight + correction
|
| 531 |
else:
|
| 532 |
+
reconstructed[key] = fp_weight
|
| 533 |
else:
|
| 534 |
+
reconstructed[key] = fp_weight
|
| 535 |
+
|
| 536 |
+
print("Model reconstructed with FP8 error recovery")
|
| 537 |
```
|
| 538 |
+
|
| 539 |
+
> **Note**: This precision recovery targets FP8 quantization errors.
|
| 540 |
+
> Average quantization error: {stats.get('avg_error', 0):.6f}
|
| 541 |
"""
|
| 542 |
+
|
| 543 |
with open(os.path.join(output_dir, "README.md"), "w") as f:
|
| 544 |
f.write(readme)
|
| 545 |
|
|
|
|
| 553 |
)
|
| 554 |
|
| 555 |
progress(1.0, desc="β
Done!")
|
| 556 |
+
|
| 557 |
result_html = f"""
|
| 558 |
β
Success!
|
| 559 |
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
|
| 560 |
+
Includes: FP8 model + precision recovery ({precision_recovery_type}).
|
| 561 |
+
Average quantization error: {stats.get('avg_error', 0):.6f}
|
| 562 |
"""
|
| 563 |
+
|
| 564 |
+
if stats['processed_layers'] > 0 or stats['correction_layers'] > 0:
|
| 565 |
+
result_html += f"<br>Precision recovery applied to {stats['processed_layers'] + stats['correction_layers']} layers."
|
| 566 |
+
|
| 567 |
return gr.HTML(result_html), "β
FP8 + precision recovery upload successful!", msg
|
| 568 |
|
| 569 |
except Exception as e:
|
| 570 |
+
error_msg = f"β Error: {str(e)}\n{traceback.format_exc()}"
|
| 571 |
+
return None, error_msg, ""
|
|
|
|
| 572 |
|
| 573 |
finally:
|
| 574 |
if temp_dir:
|
|
|
|
| 576 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 577 |
|
| 578 |
with gr.Blocks(title="FP8 + Precision Recovery Extractor") as demo:
|
| 579 |
+
gr.Markdown("# π FP8 Converter with Architecture-Specific Precision Recovery")
|
| 580 |
+
gr.Markdown("Convert models to **FP8** with **error-based precision recovery**.")
|
| 581 |
|
| 582 |
with gr.Row():
|
| 583 |
with gr.Column():
|
|
|
|
| 587 |
|
| 588 |
with gr.Accordion("Advanced Settings", open=True):
|
| 589 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 590 |
+
lora_rank = gr.Slider(minimum=8, maximum=256, step=8, value=128,
|
| 591 |
+
label="LoRA Rank (for text/transformers)")
|
| 592 |
architecture = gr.Dropdown(
|
| 593 |
choices=[
|
| 594 |
("Auto-detect architecture", "auto"),
|
| 595 |
("Text Encoder (LoRA)", "text_encoder"),
|
| 596 |
("Transformer blocks (LoRA)", "transformer"),
|
| 597 |
("VAE (Correction Factors)", "vae"),
|
| 598 |
+
("UNet Convolutions (LoRA)", "unet_conv"),
|
| 599 |
("All layers (LoRA where applicable)", "all")
|
| 600 |
],
|
| 601 |
value="auto",
|
|
|
|
| 604 |
|
| 605 |
with gr.Accordion("Authentication", open=False):
|
| 606 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
| 607 |
+
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password",
|
| 608 |
+
visible=MODELScope_AVAILABLE)
|
| 609 |
|
| 610 |
with gr.Column():
|
| 611 |
target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
|
| 612 |
+
new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8-precision")
|
| 613 |
private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
|
| 614 |
|
| 615 |
status_output = gr.Markdown()
|
|
|
|
| 639 |
|
| 640 |
gr.Examples(
|
| 641 |
examples=[
|
| 642 |
+
["huggingface", "https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder",
|
| 643 |
+
"model.safetensors", "e5m2", 96, "text_encoder"],
|
| 644 |
+
["huggingface", "https://huggingface.co/stabilityai/sdxl-vae",
|
| 645 |
+
"diffusion_pytorch_model.safetensors", "e4m3fn", 64, "vae"],
|
| 646 |
+
["huggingface", "https://huggingface.co/Yabo/FramePainter/tree/main",
|
| 647 |
+
"unet_diffusion_pytorch_model.safetensors", "e5m2", 128, "transformer"]
|
| 648 |
],
|
| 649 |
+
inputs=[source_type, repo_url, safetensors_filename, fp8_format, lora_rank, architecture],
|
| 650 |
label="Example Conversions"
|
| 651 |
)
|
| 652 |
|
| 653 |
gr.Markdown("""
|
| 654 |
+
## π― What This Tool Does
|
| 655 |
+
|
| 656 |
+
Unlike traditional LoRA fine-tuning, this tool:
|
| 657 |
|
| 658 |
+
1. **Quantizes** the model to FP8 (loses precision)
|
| 659 |
+
2. **Measures** the quantization error for each weight
|
| 660 |
+
3. **Extracts recovery weights** that specifically recover this error
|
| 661 |
+
4. **Only applies** recovery where error is significant (>0.001%)
|
| 662 |
|
| 663 |
+
## π‘ Recommended Settings
|
|
|
|
|
|
|
| 664 |
|
| 665 |
+
- **Text Encoders**: rank 64-96 (text is sensitive)
|
| 666 |
+
- **Transformers**: rank 96-128
|
| 667 |
+
- **VAE**: Uses correction factors (no rank needed)
|
| 668 |
+
- **UNet Convolutions**: rank 32-64
|
| 669 |
|
| 670 |
+
## β οΈ Important Notes
|
| 671 |
|
| 672 |
+
- This recovers **FP8 quantization errors**, not fine-tuning changes
|
| 673 |
+
- If FP8 error is tiny (<0.0001%), recovery may not be generated
|
| 674 |
+
- Higher rank β better for error recovery (use recommended ranges)
|
| 675 |
""")
|
| 676 |
|
| 677 |
demo.launch()
|