new02 / app.py
codemichaeld's picture
Update app.py
bd8eca9 verified
raw
history blame
8.04 kB
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from safetensors.torch import load_file
import torch
import subprocess
# --- Conversion Function: Safetensors (UNet) β†’ GGUF ---
def convert_unet_to_gguf(safetensors_path, output_dir, progress=gr.Progress()):
"""
Converts a UNet safetensors file to GGUF using gguf-connector's CLI (t2 or t).
Assumes the file is named 'unet.safetensors'.
"""
progress(0.1, desc="Starting UNet to GGUF conversion...")
try:
# Ensure gguf-connector is available
import gguf_connector # noqa
# Copy input to working dir because ggc expects files in current dir
work_dir = tempfile.mkdtemp()
input_path = os.path.join(work_dir, "unet.safetensors")
shutil.copy(safetensors_path, input_path)
# GGUF output will be named automatically like unet.safetensors -> unet.gguf
gguf_output_path = os.path.join(work_dir, "unet.gguf")
progress(0.3, desc="Running gguf-connector (t2: safetensors β†’ GGUF)...")
# Use 'ggc t2' for conversion (beta: unlimited)
# This is interactive, so we must simulate input via echo or expect
# But since ggc t2 may be interactive, we try non-interactive fallback:
# Unfortunately, ggc does not support non-interactive mode robustly.
# So we simulate by running in dir and hoping it picks the only file.
# Change working dir so ggc sees the file
original_cwd = os.getcwd()
os.chdir(work_dir)
try:
# Launch ggc t2 and auto-select first file via input redirection
# This is fragile but best-effort
result = subprocess.run(
["ggc", "t2"],
input="1\n", # select first model
text=True,
capture_output=True,
timeout=300
)
if result.returncode != 0:
raise RuntimeError(f"ggc t2 failed: {result.stderr}")
finally:
os.chdir(original_cwd)
if not os.path.exists(gguf_output_path):
# Try alternative naming
candidates = [f for f in os.listdir(work_dir) if f.endswith(".gguf")]
if not candidates:
raise FileNotFoundError("No GGUF file generated by ggc t2")
gguf_output_path = os.path.join(work_dir, candidates[0])
# Move to output dir
final_gguf_path = os.path.join(output_dir, "unet.gguf")
shutil.move(gguf_output_path, final_gguf_path)
# Also save minimal config
config_path = os.path.join(output_dir, "config.json")
with open(config_path, "w") as f:
json.dump({
"model_type": "unet",
"format": "gguf",
"source": "converted from safetensors"
}, f)
progress(1.0, desc="Conversion to GGUF complete!")
return True, "UNet converted to GGUF successfully."
except Exception as e:
return False, str(e)
finally:
if 'work_dir' in locals():
shutil.rmtree(work_dir, ignore_errors=True)
# --- Main Processing Function ---
def process_and_upload_unet_to_gguf(repo_url, hf_token, new_repo_id, private_repo, progress=gr.Progress()):
if not all([repo_url, hf_token, new_repo_id]):
return None, "❌ Error: Please fill in all fields.", ""
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "❌ Error: Invalid repository ID format. Use 'username/model-name'.", ""
temp_dir = tempfile.mkdtemp()
output_dir = tempfile.mkdtemp()
try:
# Authenticate
progress(0.05, desc="Logging into Hugging Face...")
api = HfApi(token=hf_token)
user_info = api.whoami()
user_name = user_info['name']
progress(0.1, desc=f"Logged in as {user_name}.")
# Parse source repo
clean_url = repo_url.strip().rstrip("/")
if "huggingface.co" not in clean_url:
return None, "❌ Source must be a Hugging Face model repo.", ""
src_repo_id = clean_url.replace("https://huggingface.co/", "")
# Download only unet.safetensors
progress(0.15, desc="Downloading unet.safetensors...")
safetensors_path = hf_hub_download(
repo_id=src_repo_id,
filename="unet.safetensors",
cache_dir=temp_dir,
token=hf_token
)
progress(0.3, desc="Download complete.")
# Convert
success, msg = convert_unet_to_gguf(safetensors_path, output_dir, progress)
if not success:
return None, f"❌ Conversion failed: {msg}", ""
# Create new repo
progress(0.8, desc="Creating new repository...")
api.create_repo(
repo_id=new_repo_id,
private=private_repo,
repo_type="model",
exist_ok=True
)
# Generate README
readme = f"""---
library_name: diffusers
tags:
- gguf
- unet
- diffusion
- converted-by-gradio
---
# GGUF UNet Model
Converted from: [`{src_repo_id}`](https://huggingface.co/{src_repo_id})
File: `unet.safetensors` β†’ `unet.gguf`
Converted by: {user_name}
Date: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
> ⚠️ This is a GGUF-quantized UNet for storage efficiency. Use with compatible GGUF-aware inference engines.
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(readme)
# Upload
progress(0.9, desc="Uploading to Hugging Face Hub...")
api.upload_folder(
repo_id=new_repo_id,
folder_path=output_dir,
repo_type="model",
token=hf_token,
commit_message="Upload UNet GGUF conversion"
)
progress(1.0, desc="βœ… Done!")
result_html = f"""
βœ… Success!
Your GGUF UNet is uploaded to: [{new_repo_id}](https://huggingface.co/{new_repo_id})
Visibility: {'Private' if private_repo else 'Public'}
"""
return gr.HTML(result_html), "βœ… Conversion and upload successful!", ""
except Exception as e:
return None, f"❌ Error: {str(e)}", ""
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
# --- Gradio UI ---
with gr.Blocks(title="UNet Safetensors β†’ GGUF Converter") as demo:
gr.Markdown("# πŸ”„ UNet (Safetensors) to GGUF Converter")
gr.Markdown("Converts `unet.safetensors` from a Hugging Face model repo to GGUF format for compact storage.")
with gr.Row():
with gr.Column():
repo_url = gr.Textbox(
label="Source Model Repository URL",
placeholder="https://huggingface.co/Yabo/FramePainter",
info="Must contain 'unet.safetensors'"
)
hf_token = gr.Textbox(
label="Hugging Face Token",
type="password",
info="Write-access token from https://huggingface.co/settings/tokens"
)
with gr.Column():
new_repo_id = gr.Textbox(
label="New Repository ID",
placeholder="your-username/framepainter-unet-gguf",
info="Format: username/model-name"
)
private_repo = gr.Checkbox(label="Make Private", value=False)
convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")
with gr.Row():
status_output = gr.Markdown()
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_unet_to_gguf,
inputs=[repo_url, hf_token, new_repo_id, private_repo],
outputs=[repo_link_output, status_output],
show_progress=True
)
gr.Examples(
examples=[
["https://huggingface.co/Yabo/FramePainter"]
],
inputs=[repo_url]
)
demo.launch()