Spaces:
Running
Running
Asankhaya Sharma
commited on
Commit
•
dfd217b
1
Parent(s):
6128070
new format for chat
Browse files- main.py +92 -37
- question.py +0 -85
- requirements.txt +3 -2
main.py
CHANGED
@@ -1,42 +1,76 @@
|
|
1 |
# main.py
|
2 |
import os
|
3 |
-
import tempfile
|
4 |
-
|
5 |
import streamlit as st
|
6 |
-
|
7 |
-
|
8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from supabase import Client, create_client
|
10 |
-
from
|
|
|
11 |
|
12 |
supabase_url = st.secrets.SUPABASE_URL
|
13 |
supabase_key = st.secrets.SUPABASE_KEY
|
14 |
openai_api_key = st.secrets.openai_api_key
|
15 |
anthropic_api_key = st.secrets.anthropic_api_key
|
16 |
hf_api_key = st.secrets.hf_api_key
|
17 |
-
supabase: Client = create_client(supabase_url, supabase_key)
|
18 |
-
self_hosted = st.secrets.self_hosted
|
19 |
username = st.secrets.username
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
24 |
api_key=hf_api_key,
|
25 |
model_name="BAAI/bge-large-en-v1.5"
|
26 |
)
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
# Set the theme
|
41 |
st.set_page_config(
|
42 |
page_title="Securade.ai - Safety Copilot",
|
@@ -54,25 +88,46 @@ st.title("👷♂️ Safety Copilot 🦺")
|
|
54 |
|
55 |
st.markdown("Chat with your personal safety assistant about any health & safety related queries.")
|
56 |
st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
|
|
|
57 |
|
58 |
-
st.
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
if
|
68 |
-
|
69 |
-
|
70 |
-
st.session_state
|
71 |
-
|
72 |
-
st.
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
1 |
# main.py
|
2 |
import os
|
|
|
|
|
3 |
import streamlit as st
|
4 |
+
import anthropic
|
5 |
+
|
6 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
10 |
+
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.memory import ConversationBufferMemory
|
13 |
+
|
14 |
from supabase import Client, create_client
|
15 |
+
from streamlit.logger import get_logger
|
16 |
+
from stats import get_usage, add_usage
|
17 |
|
18 |
supabase_url = st.secrets.SUPABASE_URL
|
19 |
supabase_key = st.secrets.SUPABASE_KEY
|
20 |
openai_api_key = st.secrets.openai_api_key
|
21 |
anthropic_api_key = st.secrets.anthropic_api_key
|
22 |
hf_api_key = st.secrets.hf_api_key
|
|
|
|
|
23 |
username = st.secrets.username
|
24 |
|
25 |
+
supabase: Client = create_client(supabase_url, supabase_key)
|
26 |
+
logger = get_logger(__name__)
|
27 |
|
28 |
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
29 |
api_key=hf_api_key,
|
30 |
model_name="BAAI/bge-large-en-v1.5"
|
31 |
)
|
32 |
|
33 |
+
if 'chat_history' not in st.session_state:
|
34 |
+
st.session_state['chat_history'] = []
|
35 |
|
36 |
+
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents")
|
37 |
+
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
38 |
|
39 |
+
model = "meta-llama/Llama-2-70b-chat-hf" #mistralai/Mixtral-8x7B-Instruct-v0.1
|
40 |
+
temperature = 0.1
|
41 |
+
max_tokens = 500
|
42 |
+
stats = str(get_usage(supabase))
|
43 |
|
44 |
+
def response_generator(query):
|
45 |
+
qa = None
|
46 |
+
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature})
|
47 |
+
logger.info('Using HF model %s', model)
|
48 |
+
# print(st.session_state['max_tokens'])
|
49 |
+
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
50 |
+
model_kwargs = {"temperature" : temperature,
|
51 |
+
"max_new_tokens" : max_tokens,
|
52 |
+
"return_full_text" : False}
|
53 |
+
hf = HuggingFaceEndpoint(
|
54 |
+
endpoint_url=endpoint_url,
|
55 |
+
task="text-generation",
|
56 |
+
huggingfacehub_api_token=hf_api_key,
|
57 |
+
model_kwargs=model_kwargs
|
58 |
+
)
|
59 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True)
|
60 |
+
|
61 |
+
# Generate model's response
|
62 |
+
model_response = qa({"question": query})
|
63 |
+
logger.info('Result: %s', model_response["answer"])
|
64 |
+
sources = model_response["source_documents"]
|
65 |
+
logger.info('Sources: %s', model_response["source_documents"])
|
66 |
+
|
67 |
+
if len(sources) > 0:
|
68 |
+
response = model_response["answer"]
|
69 |
+
else:
|
70 |
+
response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email copilot@securade.ai."
|
71 |
+
|
72 |
+
return response
|
73 |
|
|
|
74 |
# Set the theme
|
75 |
st.set_page_config(
|
76 |
page_title="Securade.ai - Safety Copilot",
|
|
|
88 |
|
89 |
st.markdown("Chat with your personal safety assistant about any health & safety related queries.")
|
90 |
st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
|
91 |
+
st.markdown("_"+ stats + " queries answered!_")
|
92 |
|
93 |
+
if 'chat_history' not in st.session_state:
|
94 |
+
st.session_state['chat_history'] = []
|
95 |
+
|
96 |
+
# Display chat messages from history on app rerun
|
97 |
+
for message in st.session_state.chat_history:
|
98 |
+
with st.chat_message(message["role"]):
|
99 |
+
st.markdown(message["content"])
|
100 |
+
|
101 |
+
# Accept user input
|
102 |
+
if prompt := st.chat_input("Ask a question"):
|
103 |
+
# print(prompt)
|
104 |
+
# Add user message to chat history
|
105 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
106 |
+
# Display user message in chat message container
|
107 |
+
with st.chat_message("user"):
|
108 |
+
st.markdown(prompt)
|
109 |
+
|
110 |
+
with st.spinner('Safety briefing in progress... Your customized guidance is en route.'):
|
111 |
+
response = response_generator(prompt)
|
112 |
+
|
113 |
+
# Display assistant response in chat message container
|
114 |
+
with st.chat_message("assistant"):
|
115 |
+
st.markdown(response)
|
116 |
+
# Add assistant response to chat history
|
117 |
+
# print(response)
|
118 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
119 |
+
|
120 |
+
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
121 |
+
# columns = st.columns(2)
|
122 |
+
# with columns[0]:
|
123 |
+
# button = st.button("Ask")
|
124 |
+
# with columns[1]:
|
125 |
+
# clear_history = st.button("Clear History", type='secondary')
|
126 |
+
|
127 |
+
# st.markdown("---\n\n")
|
128 |
|
129 |
+
# if clear_history:
|
130 |
+
# # Clear memory in Langchain
|
131 |
+
# memory.clear()
|
132 |
+
# st.session_state['chat_history'] = []
|
133 |
+
# st.experimental_rerun()
|
question.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import anthropic
|
2 |
-
import streamlit as st
|
3 |
-
from streamlit.logger import get_logger
|
4 |
-
from langchain.chains import ConversationalRetrievalChain
|
5 |
-
from langchain.memory import ConversationBufferMemory
|
6 |
-
from langchain.llms import OpenAI
|
7 |
-
from langchain.llms import HuggingFaceEndpoint
|
8 |
-
from langchain.chat_models import ChatAnthropic
|
9 |
-
from langchain.vectorstores import SupabaseVectorStore
|
10 |
-
from stats import add_usage
|
11 |
-
|
12 |
-
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
13 |
-
openai_api_key = st.secrets.openai_api_key
|
14 |
-
anthropic_api_key = st.secrets.anthropic_api_key
|
15 |
-
hf_api_key = st.secrets.hf_api_key
|
16 |
-
logger = get_logger(__name__)
|
17 |
-
|
18 |
-
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db, stats):
|
19 |
-
|
20 |
-
if 'chat_history' not in st.session_state:
|
21 |
-
st.session_state['chat_history'] = []
|
22 |
-
|
23 |
-
query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
24 |
-
columns = st.columns(2)
|
25 |
-
with columns[0]:
|
26 |
-
button = st.button("Ask")
|
27 |
-
with columns[1]:
|
28 |
-
clear_history = st.button("Clear History", type='secondary')
|
29 |
-
|
30 |
-
st.markdown("---\n\n")
|
31 |
-
|
32 |
-
if clear_history:
|
33 |
-
# Clear memory in Langchain
|
34 |
-
memory.clear()
|
35 |
-
st.session_state['chat_history'] = []
|
36 |
-
st.experimental_rerun()
|
37 |
-
|
38 |
-
if button:
|
39 |
-
qa = None
|
40 |
-
add_usage(stats_db, "chat", "prompt" + query, {"model": model, "temperature": st.session_state['temperature']})
|
41 |
-
if model.startswith("gpt"):
|
42 |
-
logger.info('Using OpenAI model %s', model)
|
43 |
-
qa = ConversationalRetrievalChain.from_llm(
|
44 |
-
OpenAI(
|
45 |
-
model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
|
46 |
-
elif anthropic_api_key and model.startswith("claude"):
|
47 |
-
logger.info('Using Anthropics model %s', model)
|
48 |
-
qa = ConversationalRetrievalChain.from_llm(
|
49 |
-
ChatAnthropic(
|
50 |
-
model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
|
51 |
-
elif hf_api_key:
|
52 |
-
logger.info('Using HF model %s', model)
|
53 |
-
# print(st.session_state['max_tokens'])
|
54 |
-
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
55 |
-
model_kwargs = {"temperature" : st.session_state['temperature'],
|
56 |
-
"max_new_tokens" : st.session_state['max_tokens'],
|
57 |
-
"return_full_text" : False}
|
58 |
-
hf = HuggingFaceEndpoint(
|
59 |
-
endpoint_url=endpoint_url,
|
60 |
-
task="text-generation",
|
61 |
-
huggingfacehub_api_token=hf_api_key,
|
62 |
-
model_kwargs=model_kwargs
|
63 |
-
)
|
64 |
-
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True)
|
65 |
-
|
66 |
-
print("Question>")
|
67 |
-
print(query)
|
68 |
-
st.session_state['chat_history'].append(("You", query))
|
69 |
-
|
70 |
-
# Generate model's response and add it to chat history
|
71 |
-
model_response = qa({"question": query})
|
72 |
-
logger.info('Result: %s', model_response["answer"])
|
73 |
-
sources = model_response["source_documents"]
|
74 |
-
logger.info('Sources: %s', model_response["source_documents"])
|
75 |
-
|
76 |
-
if len(sources) > 0:
|
77 |
-
st.session_state['chat_history'].append(("Safety Copilot", model_response["answer"]))
|
78 |
-
else:
|
79 |
-
st.session_state['chat_history'].append(("Safety Copilot", "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email copilot@securade.ai."))
|
80 |
-
|
81 |
-
# Display chat history
|
82 |
-
st.empty()
|
83 |
-
chat_history = st.session_state['chat_history']
|
84 |
-
for speaker, text in chat_history:
|
85 |
-
st.markdown(f"**{speaker}:** {text}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
langchain==0.
|
|
|
2 |
Markdown==3.4.3
|
3 |
openai==0.27.6
|
4 |
pdf2image==1.16.3
|
5 |
pypdf==3.8.1
|
6 |
-
streamlit==1.
|
7 |
StrEnum==0.4.10
|
8 |
supabase==1.0.3
|
9 |
tiktoken==0.4.0
|
|
|
1 |
+
langchain-community==0.20.0
|
2 |
+
langchain==0.1.7
|
3 |
Markdown==3.4.3
|
4 |
openai==0.27.6
|
5 |
pdf2image==1.16.3
|
6 |
pypdf==3.8.1
|
7 |
+
streamlit==1.31.0
|
8 |
StrEnum==0.4.10
|
9 |
supabase==1.0.3
|
10 |
tiktoken==0.4.0
|