Spaces:
Running
Running
Delete loaders
Browse files- loaders/__init__.py +0 -0
- loaders/__pycache__/__init__.cpython-310.pyc +0 -0
- loaders/__pycache__/audio.cpython-310.pyc +0 -0
- loaders/__pycache__/common.cpython-310.pyc +0 -0
- loaders/__pycache__/csv.cpython-310.pyc +0 -0
- loaders/__pycache__/docx.cpython-310.pyc +0 -0
- loaders/__pycache__/html.cpython-310.pyc +0 -0
- loaders/__pycache__/markdown.cpython-310.pyc +0 -0
- loaders/__pycache__/pdf.cpython-310.pyc +0 -0
- loaders/__pycache__/powerpoint.cpython-310.pyc +0 -0
- loaders/__pycache__/txt.cpython-310.pyc +0 -0
- loaders/audio.py +0 -65
- loaders/common.py +0 -46
- loaders/csv.py +0 -5
- loaders/docx.py +0 -5
- loaders/html.py +0 -47
- loaders/markdown.py +0 -5
- loaders/pdf.py +0 -6
- loaders/powerpoint.py +0 -5
- loaders/txt.py +0 -5
loaders/__init__.py
DELETED
File without changes
|
loaders/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (144 Bytes)
|
|
loaders/__pycache__/audio.cpython-310.pyc
DELETED
Binary file (2.39 kB)
|
|
loaders/__pycache__/common.cpython-310.pyc
DELETED
Binary file (1.69 kB)
|
|
loaders/__pycache__/csv.cpython-310.pyc
DELETED
Binary file (425 Bytes)
|
|
loaders/__pycache__/docx.cpython-310.pyc
DELETED
Binary file (422 Bytes)
|
|
loaders/__pycache__/html.cpython-310.pyc
DELETED
Binary file (1.97 kB)
|
|
loaders/__pycache__/markdown.cpython-310.pyc
DELETED
Binary file (440 Bytes)
|
|
loaders/__pycache__/pdf.cpython-310.pyc
DELETED
Binary file (416 Bytes)
|
|
loaders/__pycache__/powerpoint.cpython-310.pyc
DELETED
Binary file (448 Bytes)
|
|
loaders/__pycache__/txt.cpython-310.pyc
DELETED
Binary file (415 Bytes)
|
|
loaders/audio.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import tempfile
|
3 |
-
from io import BytesIO
|
4 |
-
import time
|
5 |
-
import openai
|
6 |
-
import streamlit as st
|
7 |
-
from langchain.document_loaders import TextLoader
|
8 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
from utils import compute_sha1_from_content
|
11 |
-
from langchain.schema import Document
|
12 |
-
from stats import add_usage
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Create a function to transcribe audio using Whisper
|
17 |
-
def _transcribe_audio(api_key, audio_file, stats_db):
|
18 |
-
openai.api_key = api_key
|
19 |
-
transcript = ""
|
20 |
-
|
21 |
-
with BytesIO(audio_file.read()) as audio_bytes:
|
22 |
-
# Get the extension of the uploaded file
|
23 |
-
file_extension = os.path.splitext(audio_file.name)[-1]
|
24 |
-
|
25 |
-
# Create a temporary file with the uploaded audio data and the correct extension
|
26 |
-
with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file:
|
27 |
-
temp_audio_file.write(audio_bytes.read())
|
28 |
-
temp_audio_file.seek(0) # Move the file pointer to the beginning of the file
|
29 |
-
|
30 |
-
# Transcribe the temporary audio file
|
31 |
-
if st.secrets.self_hosted == "false":
|
32 |
-
add_usage(stats_db, "embedding", "audio", metadata={"file_name": audio_file.name,"file_type": file_extension})
|
33 |
-
|
34 |
-
transcript = openai.Audio.translate("whisper-1", temp_audio_file)
|
35 |
-
|
36 |
-
return transcript
|
37 |
-
|
38 |
-
def process_audio(vector_store, file_name, stats_db):
|
39 |
-
if st.secrets.self_hosted == "false":
|
40 |
-
if file_name.size > 10000000:
|
41 |
-
st.error("File size is too large. Please upload a file smaller than 1MB.")
|
42 |
-
return
|
43 |
-
file_sha = ""
|
44 |
-
dateshort = time.strftime("%Y%m%d-%H%M%S")
|
45 |
-
file_meta_name = f"audiotranscript_{dateshort}.txt"
|
46 |
-
openai_api_key = st.secrets["openai_api_key"]
|
47 |
-
transcript = _transcribe_audio(openai_api_key, file_name, stats_db)
|
48 |
-
file_sha = compute_sha1_from_content(transcript.text.encode("utf-8"))
|
49 |
-
## file size computed from transcript
|
50 |
-
file_size = len(transcript.text.encode("utf-8"))
|
51 |
-
|
52 |
-
|
53 |
-
## Load chunk size and overlap from sidebar
|
54 |
-
chunk_size = st.session_state['chunk_size']
|
55 |
-
chunk_overlap = st.session_state['chunk_overlap']
|
56 |
-
|
57 |
-
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
58 |
-
texts = text_splitter.split_text(transcript.text)
|
59 |
-
|
60 |
-
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts]
|
61 |
-
|
62 |
-
if st.secrets.self_hosted == "false":
|
63 |
-
add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})
|
64 |
-
vector_store.add_documents(docs_with_metadata)
|
65 |
-
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loaders/common.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
import tempfile
|
2 |
-
import time
|
3 |
-
import os
|
4 |
-
from utils import compute_sha1_from_file
|
5 |
-
from langchain.schema import Document
|
6 |
-
import streamlit as st
|
7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from stats import add_usage
|
9 |
-
|
10 |
-
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
|
11 |
-
documents = []
|
12 |
-
file_name = file.name
|
13 |
-
file_size = file.size
|
14 |
-
if st.secrets.self_hosted == "false":
|
15 |
-
if file_size > 1000000:
|
16 |
-
st.error("File size is too large. Please upload a file smaller than 1MB or self host.")
|
17 |
-
return
|
18 |
-
|
19 |
-
dateshort = time.strftime("%Y%m%d")
|
20 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
|
21 |
-
tmp_file.write(file.getvalue())
|
22 |
-
tmp_file.flush()
|
23 |
-
|
24 |
-
loader = loader_class(tmp_file.name)
|
25 |
-
documents = loader.load()
|
26 |
-
file_sha1 = compute_sha1_from_file(tmp_file.name)
|
27 |
-
|
28 |
-
os.remove(tmp_file.name)
|
29 |
-
|
30 |
-
chunk_size = st.session_state['chunk_size']
|
31 |
-
chunk_overlap = st.session_state['chunk_overlap']
|
32 |
-
|
33 |
-
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
34 |
-
|
35 |
-
documents = text_splitter.split_documents(documents)
|
36 |
-
|
37 |
-
# Add the document sha1 as metadata to each document
|
38 |
-
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name,
|
39 |
-
"chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort,
|
40 |
-
"user" : st.session_state["username"]})
|
41 |
-
for doc in documents]
|
42 |
-
|
43 |
-
vector_store.add_documents(docs_with_metadata)
|
44 |
-
if stats_db:
|
45 |
-
add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix,
|
46 |
-
"chunk_size": chunk_size, "chunk_overlap": chunk_overlap})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loaders/csv.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders.csv_loader import CSVLoader
|
3 |
-
|
4 |
-
def process_csv(vector_store, file,stats_db):
|
5 |
-
return process_file(vector_store, file, CSVLoader, ".csv",stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|
loaders/docx.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import Docx2txtLoader
|
3 |
-
|
4 |
-
def process_docx(vector_store, file, stats_db):
|
5 |
-
return process_file(vector_store, file, Docx2txtLoader, ".docx", stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|
loaders/html.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import UnstructuredHTMLLoader
|
3 |
-
import requests
|
4 |
-
import re
|
5 |
-
import unicodedata
|
6 |
-
import tempfile
|
7 |
-
import os
|
8 |
-
import streamlit as st
|
9 |
-
from streamlit.runtime.uploaded_file_manager import UploadedFileRec, UploadedFile
|
10 |
-
|
11 |
-
def process_html(vector_store, file, stats_db):
|
12 |
-
return process_file(vector_store, file, UnstructuredHTMLLoader, ".html", stats_db=stats_db)
|
13 |
-
|
14 |
-
|
15 |
-
def get_html(url):
|
16 |
-
response = requests.get(url)
|
17 |
-
if response.status_code == 200:
|
18 |
-
return response.text
|
19 |
-
else:
|
20 |
-
return None
|
21 |
-
|
22 |
-
def create_html_file(url, content):
|
23 |
-
file_name = slugify(url) + ".html"
|
24 |
-
temp_file_path = os.path.join(tempfile.gettempdir(), file_name)
|
25 |
-
with open(temp_file_path, 'w') as temp_file:
|
26 |
-
temp_file.write(content)
|
27 |
-
|
28 |
-
record = UploadedFileRec(id=None, name=file_name, type='text/html', data=open(temp_file_path, 'rb').read())
|
29 |
-
uploaded_file = UploadedFile(record)
|
30 |
-
|
31 |
-
return uploaded_file, temp_file_path
|
32 |
-
|
33 |
-
def delete_tempfile(temp_file_path, url, ret):
|
34 |
-
try:
|
35 |
-
os.remove(temp_file_path)
|
36 |
-
if ret:
|
37 |
-
st.write(f"✅ Content saved... {url} ")
|
38 |
-
except OSError as e:
|
39 |
-
print(f"Error while deleting the temporary file: {str(e)}")
|
40 |
-
if ret:
|
41 |
-
st.write(f"❌ Error while saving content... {url} ")
|
42 |
-
|
43 |
-
def slugify(text):
|
44 |
-
text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8')
|
45 |
-
text = re.sub(r'[^\w\s-]', '', text).strip().lower()
|
46 |
-
text = re.sub(r'[-\s]+', '-', text)
|
47 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loaders/markdown.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import UnstructuredMarkdownLoader
|
3 |
-
|
4 |
-
def process_markdown(vector_store, file, stats_db):
|
5 |
-
return process_file(vector_store, file, UnstructuredMarkdownLoader, ".md", stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|
loaders/pdf.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import PyPDFLoader
|
3 |
-
|
4 |
-
|
5 |
-
def process_pdf(vector_store, file, stats_db):
|
6 |
-
return process_file(vector_store, file, PyPDFLoader, ".pdf", stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loaders/powerpoint.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import UnstructuredPowerPointLoader
|
3 |
-
|
4 |
-
def process_powerpoint(vector_store, file, stats_db):
|
5 |
-
return process_file(vector_store, file, UnstructuredPowerPointLoader, ".pptx", stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|
loaders/txt.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .common import process_file
|
2 |
-
from langchain.document_loaders import TextLoader
|
3 |
-
|
4 |
-
def process_txt(vector_store, file,stats_db):
|
5 |
-
return process_file(vector_store, file, TextLoader, ".txt", stats_db=stats_db)
|
|
|
|
|
|
|
|
|
|
|
|