Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
# Load the pre-trained model | |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def get_embeddings(sentences): | |
# Check if the input is a list | |
if isinstance(sentences, list): | |
sentence_list = sentences | |
elif isinstance(sentences, str): | |
# If it's a string, split by new lines to create a list of sentences | |
sentence_list = sentences.split("\n") | |
else: | |
raise ValueError("Input should be either a string or a list of strings.") | |
# Generate embeddings | |
embeddings = model.encode(sentence_list, convert_to_tensor=True) | |
return str(embeddings.tolist()) | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=get_embeddings, # Function to call | |
inputs=gr.Textbox(lines=5, placeholder="Enter sentences here, one per line"), # Input component | |
outputs=gr.Textbox(label="Embeddings"), # Output component | |
title="Sentence Embeddings", # Interface title | |
description="Enter sentences to get their embeddings." # Description | |
) | |
# Launch the interface | |
interface.launch() | |