codeblacks's picture
Update app.py
7149c22 verified
raw
history blame
995 Bytes
import gradio as gr
import numpy as np
from sentence_transformers import SentenceTransformer
# Load the pre-trained model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def get_embeddings(sentences):
# Split sentences by new line
# sentences_list = [s.strip() for s in sentences.split('\n') if s.strip()]
# Get embeddings for the input sentences
embeddings = model.encode(sentences, convert_to_tensor=True)
# Convert to 2D NumPy array
# embeddings_array = np.array(embeddings)
embeddings_array=embeddings.tolist()
return embeddings_array
# Define the Gradio interface
interface = gr.Interface(
fn=get_embeddings, # Function to call
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
outputs=gr.DataFrame(),
title="Sentence Embeddings", # Interface title
description="Enter sentences to get their embeddings." # Description
)
# Launch the interface
interface.launch()