Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LongformerTokenizer, LongformerModel
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load the pre-trained Longformer model and tokenizer
|
6 |
+
tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
|
7 |
+
model = LongformerModel.from_pretrained('allenai/longformer-base-4096')
|
8 |
+
|
9 |
+
def get_longformer_embeddings(sentences):
|
10 |
+
# Tokenize input sentences
|
11 |
+
inputs = tokenizer(sentences, return_tensors='pt', padding=True, truncation=True, max_length=2048)
|
12 |
+
# Get embeddings
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
embeddings = outputs.last_hidden_state.mean(dim=1) # Mean pooling over the sequence
|
16 |
+
return embeddings.numpy().tolist()
|
17 |
+
|
18 |
+
# Define the Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=get_longformer_embeddings, # Function to call
|
21 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
|
22 |
+
outputs=gr.JSON(), # Output component
|
23 |
+
title="Sentence Embeddings with Longformer", # Interface title
|
24 |
+
description="Enter sentences to get their embeddings with Longformer (up to 2048 tokens)." # Description
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the interface
|
28 |
+
interface.launch()
|