Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load the pre-trained model
|
5 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
6 |
+
|
7 |
+
# Define the function to process requests
|
8 |
+
def generate_embeddings(chunks):
|
9 |
+
embeddings = embedding_model.encode(chunks, convert_to_tensor=True)
|
10 |
+
return embeddings.tolist() # Convert tensor to list for Gradio
|
11 |
+
|
12 |
+
# Define the Gradio interface
|
13 |
+
iface = gr.Interface(
|
14 |
+
fn=generate_embeddings,
|
15 |
+
inputs=gr.inputs.Textbox(lines=5, placeholder="Enter text chunks here..."),
|
16 |
+
outputs=gr.outputs.JSON(),
|
17 |
+
title="Sentence Transformer Embeddings",
|
18 |
+
description="Generate embeddings for input text chunks."
|
19 |
+
)
|
20 |
+
|
21 |
+
# Launch the Gradio app
|
22 |
+
if __name__ == "__main__":
|
23 |
+
iface.launch()
|