Spaces:
Sleeping
Sleeping
YeongMin
commited on
Commit
ยท
cbdeabc
1
Parent(s):
968f6a0
0.2v
Browse files- .claude/settings.local.json +4 -1
- IMPROVEMENTS.md +170 -0
- app.py +789 -231
- test_comprehensive.py +77 -0
- test_long_reviews.py +95 -0
- test_results.json +274 -0
.claude/settings.local.json
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
{
|
| 2 |
"permissions": {
|
| 3 |
"allow": [
|
| 4 |
-
"Bash(del:*)"
|
|
|
|
|
|
|
|
|
|
| 5 |
],
|
| 6 |
"deny": [],
|
| 7 |
"ask": []
|
|
|
|
| 1 |
{
|
| 2 |
"permissions": {
|
| 3 |
"allow": [
|
| 4 |
+
"Bash(del:*)",
|
| 5 |
+
"Bash(python3:*)",
|
| 6 |
+
"Bash(lsof:*)",
|
| 7 |
+
"Bash(xargs kill -9)"
|
| 8 |
],
|
| 9 |
"deny": [],
|
| 10 |
"ask": []
|
IMPROVEMENTS.md
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ๊ธด ๋ฌธ์ฅ ๋ถ์ ์ฑ๋ฅ ๊ฐ์ ์ฌํญ
|
| 2 |
+
|
| 3 |
+
## ๐ฏ ๋ฌธ์ ์
|
| 4 |
+
๊ธฐ์กด ์์คํ
์ ์งง์ ๋ฌธ์ฅ์ ์ ๋ถ์ํ์ง๋ง, **๋ฌธ์ฅ์ด ๊ธธ์ด์ง๊ฑฐ๋ ๋ณต์กํด์ง๋ฉด ์ธ์๋ฅ ์ด ๋ฎ์์ง๋ ๋ฌธ์ **๊ฐ ์์์ต๋๋ค.
|
| 5 |
+
|
| 6 |
+
## โ
ํด๊ฒฐ ๋ฐฉ๋ฒ
|
| 7 |
+
|
| 8 |
+
### 1. ๋ฌธ์ฅ ๋ถ๋ฆฌ ํ ๊ฐ๋ณ ๋ถ์ + ์ง๊ณ (Sentence-level Analysis)
|
| 9 |
+
|
| 10 |
+
#### ๐ ๊ตฌํ ๋ด์ฉ
|
| 11 |
+
- **100์ ์ด์์ ๊ธด ๋ฆฌ๋ทฐ**๋ฅผ ์๋์ผ๋ก ๋ฌธ์ฅ ๋จ์๋ก ๋ถ๋ฆฌ
|
| 12 |
+
- ๊ฐ ๋ฌธ์ฅ์ ๊ฐ๋ณ์ ์ผ๋ก ๋ถ์ํ ํ ๊ฒฐ๊ณผ๋ฅผ ์ง๊ณ
|
| 13 |
+
- ๋ถ์ ๋ฐฉ๋ฒ์ด `method: "sentence_split"`์ผ๋ก ํ์๋จ
|
| 14 |
+
|
| 15 |
+
#### ๐ ์ง๊ณ ์ ๋ต
|
| 16 |
+
- **๊ฐ์ ๋ถ์**: ๊ฐ ๋ฌธ์ฅ์ ๊ฐ์ ์ ์๋ฅผ **ํ๊ท **ํ์ฌ ์ ์ฒด ๊ฐ์ ํ๋จ
|
| 17 |
+
- ์: "์ข์๋ฐ ๋์จ" โ ๊ธ์ + ๋ถ์ ๋ฌธ์ฅ์ ํ๊ท = ํผํฉ ๊ฐ์ ํ์
|
| 18 |
+
|
| 19 |
+
- **์นดํ
๊ณ ๋ฆฌ ๋ถ์**: ๊ฐ ๋ฌธ์ฅ์์ ๋์จ **์ต๋ ์ ์**๋ก ์ง๊ณ
|
| 20 |
+
- ์: 5๊ฐ ๋ฌธ์ฅ ์ค 1๊ฐ์์ "๋ฐฐ์ก" ์ธ๊ธ โ ๋ฐฐ์ก ์นดํ
๊ณ ๋ฆฌ๋ก ์ธ์
|
| 21 |
+
- ์ฌ๋ฌ ์ฃผ์ ๊ฐ ์์ธ ๊ธด ๋ฆฌ๋ทฐ์์ ๋ชจ๋ ์ฃผ์ ๋ฅผ ๋์น์ง ์์
|
| 22 |
+
|
| 23 |
+
#### ๐ก ํจ๊ณผ
|
| 24 |
+
```python
|
| 25 |
+
# ์์: 121์ ๊ธด ๋ฆฌ๋ทฐ
|
| 26 |
+
๋ฆฌ๋ทฐ = "ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~
|
| 27 |
+
๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
|
| 28 |
+
๊ทธ๋๋ ๋์์ธ์ ์ ๋ง ์์๊ณ ๊ฐ๊ฒฉ๋๋น ๊ด์ฐฎ์ ๊ฒ ๊ฐ์์. ๋ฐฐ์ก๋ ๋น ๋ฅด๊ฒ ์๊ณ ์."
|
| 29 |
+
|
| 30 |
+
# ๊ฒฐ๊ณผ:
|
| 31 |
+
# - ๊ฐ์ : ๊ธ์ 58%, ๋ถ์ 27% (ํผํฉ ๊ฐ์ ์ ํํ ํฌ์ฐฉ)
|
| 32 |
+
# - ์นดํ
๊ณ ๋ฆฌ: ์ฌ์ด์ฆ, ๋์์ธ, ๊ฐ๊ฒฉ, ๋ฐฐ์ก (๋ชจ๋ ์ฃผ์ ํ์ง)
|
| 33 |
+
# - ๋ถ์ ๋ฐฉ๋ฒ: sentence_split
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
### 2. ํ๋กฌํํธ ์ต์ ํ - ๊ตฌ์ฒด์ ์์ ์ถ๊ฐ
|
| 39 |
+
|
| 40 |
+
#### ๐ ๊ฐ์ ๋ด์ฉ
|
| 41 |
+
๊ฐ ๋ถ๋ฅ ์นดํ
๊ณ ๋ฆฌ์ **์ค์ ์ฌ์ฉ ์์๋ฅผ ํฌํจ**ํ์ฌ ๋ชจ๋ธ์ ์ดํด๋ ํฅ์
|
| 42 |
+
|
| 43 |
+
#### Before & After
|
| 44 |
+
|
| 45 |
+
**Before (๊ธฐ์กด)**
|
| 46 |
+
```python
|
| 47 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ ํ์ง์ ๋ํด ์ธ๊ธํฉ๋๋ค"
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
**After (๊ฐ์ )**
|
| 51 |
+
```python
|
| 52 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ํ์ง๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค.
|
| 53 |
+
์: ์ฌ์ง, ๋ด๊ตฌ์ฑ, ์์ฑ๋, ํ์ง ์ข์, ํ์ง ๋์จ, ํผํผ, ์ฝํจ"
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
#### ๐ก ํจ๊ณผ
|
| 57 |
+
- ๋ชจ๋ธ์ด **๊ตฌ์ฒด์ ์ธ ํค์๋**๋ฅผ ํตํด ๋ ์ ํํ๊ฒ ๋ถ๋ฅ
|
| 58 |
+
- **๋ฌธ๋งฅ ์ดํด๋ ํฅ์**: "ํผํผํ๋ค" = ํ์ง ๊ด๋ จ ๋ด์ฉ
|
| 59 |
+
- **์ค๋ถ๋ฅ ๊ฐ์**: ์ ๋งคํ ํํ๋ ์์๋ฅผ ํตํด ์ ํํ ๋ถ๋ฅ
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
### 3. ์นดํ
๊ณ ๋ฆฌ ์๊ณ๊ฐ ์ํฅ ์กฐ์
|
| 64 |
+
|
| 65 |
+
#### ๐ ๋ณ๊ฒฝ ๋ด์ฉ
|
| 66 |
+
- ๊ธฐ์กด: **10% ์ด์**์ ํ์ ๋๋ฅผ ๊ฐ์ง ์นดํ
๊ณ ๋ฆฌ ์ ํ
|
| 67 |
+
- ๊ฐ์ : **25% ์ด์**์ ํ์ ๋๋ฅผ ๊ฐ์ง ์นดํ
๊ณ ๋ฆฌ๋ง ์ ํ
|
| 68 |
+
|
| 69 |
+
#### ๐ก ํจ๊ณผ
|
| 70 |
+
- **์คํ ๊ฐ์**: ์ค์ ๋ก ์ธ๊ธ๋์ง ์์ ์นดํ
๊ณ ๋ฆฌ ์ ๊ฑฐ
|
| 71 |
+
- **์ ๋ขฐ๋ ํฅ์**: ํ์คํ ์นดํ
๊ณ ๋ฆฌ๋ง ํ์
|
| 72 |
+
|
| 73 |
+
```python
|
| 74 |
+
# Before (10% ์๊ณ๊ฐ)
|
| 75 |
+
์นดํ
๊ณ ๋ฆฌ: ๊ธฐ๋ฅ/์ฑ๋ฅ (97%), ๊ตํ/ํ๋ถ (93%), ํ์ง (79%)
|
| 76 |
+
# โ ๊ตํ/ํ๋ถ์ ์ค์ ๋ก ์ธ๊ธ๋์ง ์์๋๋ฐ ํ์๋จ
|
| 77 |
+
|
| 78 |
+
# After (25% ์๊ณ๊ฐ)
|
| 79 |
+
์นดํ
๊ณ ๋ฆฌ: ํ์ง (79%), ๋ฐฐ์ก (45%)
|
| 80 |
+
# โ ์ค์ ๋ก ์ธ๊ธ๋ ์นดํ
๊ณ ๋ฆฌ๋ง ํ์
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
## ๐ ์ฑ๋ฅ ํ
์คํธ ๊ฒฐ๊ณผ
|
| 86 |
+
|
| 87 |
+
### ํ
์คํธ ์ผ์ด์ค 1: ๊ธด ํผํฉ ๊ฐ์ ๋ฆฌ๋ทฐ (121์)
|
| 88 |
+
```
|
| 89 |
+
๋ฆฌ๋ทฐ: "ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์..."
|
| 90 |
+
|
| 91 |
+
โ
๊ฒฐ๊ณผ:
|
| 92 |
+
- ๊ฐ์ : ๊ธ์ 58%, ๋ถ์ 27% (ํผํฉ ๊ฐ์ ์ ํํ ํ์
)
|
| 93 |
+
- ์นดํ
๊ณ ๋ฆฌ: ์ฌ์ด์ฆ, ๊ฐ๊ฒฉ, ๋์์ธ (๋ค์ํ ์ฃผ์ ํ์ง)
|
| 94 |
+
- ๋ฐฉ๋ฒ: sentence_split โ
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### ํ
์คํธ ์ผ์ด์ค 2: ๋ณต์กํ ๋ถ๋ง ๋ฆฌ๋ทฐ (126์)
|
| 98 |
+
```
|
| 99 |
+
๋ฆฌ๋ทฐ: "์ฌ์ง์ด๋ ์์ ๋ค๋ฅด๋ค์. ํ์ง๋ ๋ณ๋ก๊ณ ์ฌ์ด์ฆ๋ ์ ๋ง์์..."
|
| 100 |
+
|
| 101 |
+
โ
๊ฒฐ๊ณผ:
|
| 102 |
+
- ๊ฐ์ : ๋ถ์ 48% (์ ํํ ๋ถ์ ์ธ์)
|
| 103 |
+
- ์นดํ
๊ณ ๋ฆฌ: ํ์ง, ์ฌ์ด์ฆ, ์๋น์ค (๋ชจ๋ ๋ถ๋ง ์ฌํญ ํ์ง)
|
| 104 |
+
- ํค: ๋จ์ ๋ถ๋ง 38% (์์ค์ด ์๋ ์ ์์ ๋ถ๋ง์ผ๋ก ๋ถ๋ฅ)
|
| 105 |
+
- ๋ฐฉ๋ฒ: sentence_split โ
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### ํ
์คํธ ์ผ์ด์ค 3: ๊ด๊ณ ์ฑ ๋ฆฌ๋ทฐ
|
| 109 |
+
```
|
| 110 |
+
๋ฆฌ๋ทฐ: "ํ
๋ ๊ทธ๋จ @seller123 ์ผ๋ก ์ฐ๋ฝ์ฃผ์๋ฉด ๋ฐ๊ฐ์ ๋๋ฆฝ๋๋ค..."
|
| 111 |
+
|
| 112 |
+
โ
๊ฒฐ๊ณผ:
|
| 113 |
+
- ํค: ๊ด๊ณ 52% (์ ํํ ๊ด๊ณ ํ์ง)
|
| 114 |
+
- ํค์๋ ์ธ์: ํ
๋ ๊ทธ๋จ, ์นดํก ๋ฑ ๊ด๊ณ ํจํด ์ ํํ ํ์
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## ๐ฏ ์ฌ์ฉ ๋ฐฉ๋ฒ
|
| 120 |
+
|
| 121 |
+
### ์๋ ์ ์ฉ
|
| 122 |
+
- 100์ ์ด์์ ๊ธด ๋ฆฌ๋ทฐ๋ **์๋์ผ๋ก** ๋ฌธ์ฅ ๋ถ๋ฆฌ ๋ถ์ ์ ์ฉ
|
| 123 |
+
- ๋ณ๋ ์ค์ ํ์ ์์
|
| 124 |
+
|
| 125 |
+
### ์๋ ์ ์ด
|
| 126 |
+
```python
|
| 127 |
+
analyzer = ReviewAnalyzer()
|
| 128 |
+
|
| 129 |
+
# ๋ฌธ์ฅ ๋ถ๋ฆฌ ๋ถ์ ์ฌ์ฉ (๊ธฐ๋ณธ๊ฐ)
|
| 130 |
+
result = analyzer.analyze_sentiment(text, use_sentence_split=True)
|
| 131 |
+
|
| 132 |
+
# ๋ฌธ์ฅ ๋ถ๋ฆฌ ๋ถ์ ๋นํ์ฑํ
|
| 133 |
+
result = analyzer.analyze_sentiment(text, use_sentence_split=False)
|
| 134 |
+
|
| 135 |
+
# ์นดํ
๊ณ ๋ฆฌ ์๊ณ๊ฐ ์กฐ์
|
| 136 |
+
result = analyzer.analyze_category(text, min_threshold=0.3) # 30%๋ก ์ํฅ
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## ๐ ๊ฐ์ ํจ๊ณผ ์์ฝ
|
| 142 |
+
|
| 143 |
+
| ํญ๋ชฉ | ๊ฐ์ ์ | ๊ฐ์ ํ |
|
| 144 |
+
|------|---------|---------|
|
| 145 |
+
| ๊ธด ๋ฌธ์ฅ (100์+) ๊ฐ์ ๋ถ์ | ๋ถ์ ํ | โ
์ ํ (๋ฌธ์ฅ๋ณ ์ง๊ณ) |
|
| 146 |
+
| ํผํฉ ๊ฐ์ ๊ฐ์ง | ์ด๋ ค์ | โ
์ ํ (ํ๊ท ์ง๊ณ) |
|
| 147 |
+
| ์ฌ๋ฌ ์ฃผ์ ํ์ง | ์ผ๋ถ ๋๋ฝ | โ
๋ชจ๋ ํ์ง (์ต๋๊ฐ ์ง๊ณ) |
|
| 148 |
+
| ์นดํ
๊ณ ๋ฆฌ ์คํ | ๋์ (10%) | โ
๋ฎ์ (25% ์๊ณ๊ฐ) |
|
| 149 |
+
| ํ๋กฌํํธ ๏ฟฝ๏ฟฝ๏ฟฝํด๋ | ๋ณดํต | โ
๋์ (์์ ํฌํจ) |
|
| 150 |
+
|
| 151 |
+
---
|
| 152 |
+
|
| 153 |
+
## ๐ง ์ถ๊ฐ ๊ฐ์ ๊ฐ๋ฅ์ฑ
|
| 154 |
+
|
| 155 |
+
1. **์๋ฒ ๋ฉ ๊ธฐ๋ฐ ์ ์ฌ๋ ๊ณ์ฐ**: ๋ฌธ์ฅ ๊ฐ ์๋ฏธ ์ ์ฌ๋๋ฅผ ๊ณ ๋ คํ ๊ฐ์ค์น ๋ถ์ฌ
|
| 156 |
+
2. **ํค์๋ ์ถ์ถ**: ์ฃผ์ ํค์๋๋ฅผ ๋จผ์ ์ถ์ถํ์ฌ ๋ถ์ ์ ํ๋ ํฅ์
|
| 157 |
+
3. **Attention ๋ฉ์ปค๋์ฆ**: ์ค์ํ ๋ฌธ์ฅ์ ๋ ๋์ ๊ฐ์ค์น ๋ถ์ฌ
|
| 158 |
+
4. **Fine-tuning**: ์ค์ ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ก ๋ชจ๋ธ ์ถ๊ฐ ํ์ต
|
| 159 |
+
|
| 160 |
+
---
|
| 161 |
+
|
| 162 |
+
## ๐ ํ
์คํธ ์คํ ๋ฐฉ๋ฒ
|
| 163 |
+
|
| 164 |
+
```bash
|
| 165 |
+
# ์ฑ๋ฅ ํ
์คํธ ์คํฌ๋ฆฝํธ ์คํ
|
| 166 |
+
python3 test_long_reviews.py
|
| 167 |
+
|
| 168 |
+
# ๊ฒฐ๊ณผ ํ์ธ
|
| 169 |
+
cat test_results.json
|
| 170 |
+
```
|
app.py
CHANGED
|
@@ -1,8 +1,12 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
๋ฆฌ๋ทฐ ์๋ ๊ฒ์ ์๋น์ค
|
| 4 |
-
Hugging Face์ Zero-Shot Classification ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ๋ฆฌ๋ทฐ๋ฅผ
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
|
| 8 |
from transformers import pipeline
|
|
@@ -15,9 +19,14 @@ import gradio as gr
|
|
| 15 |
|
| 16 |
|
| 17 |
class ReviewAnalyzer:
|
| 18 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
def __init__(self
|
| 21 |
"""Zero-Shot Classification ํ์ดํ๋ผ์ธ ์ด๊ธฐํ"""
|
| 22 |
print("๋ชจ๋ธ ๋ก๋ฉ ์ค...")
|
| 23 |
# ํ๊ตญ์ด๋ฅผ ์ ์ดํดํ๋ multilingual ๋ชจ๋ธ ์ฌ์ฉ
|
|
@@ -26,46 +35,61 @@ class ReviewAnalyzer:
|
|
| 26 |
model="MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
|
| 27 |
)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
print("๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ!")
|
| 67 |
-
|
| 68 |
-
print("โ ํฅ์๋ ํ๋กฌํํธ ๋ชจ๋ ํ์ฑํ - ๋ ๋์ ์ ํ๋")
|
| 69 |
|
| 70 |
def preprocess_text(self, text: str) -> str:
|
| 71 |
"""
|
|
@@ -86,113 +110,525 @@ class ReviewAnalyzer:
|
|
| 86 |
|
| 87 |
return text
|
| 88 |
|
| 89 |
-
def
|
| 90 |
"""
|
| 91 |
-
|
| 92 |
|
| 93 |
Args:
|
| 94 |
-
text:
|
| 95 |
|
| 96 |
Returns:
|
| 97 |
-
|
| 98 |
"""
|
| 99 |
import re
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
if len(korean_words) >= 5:
|
| 109 |
-
return False
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
|
| 127 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
def
|
| 130 |
"""
|
| 131 |
-
|
| 132 |
|
| 133 |
Args:
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
Returns:
|
| 138 |
-
|
| 139 |
"""
|
| 140 |
-
#
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
result = self.classifier(
|
| 145 |
-
|
| 146 |
-
self.
|
| 147 |
-
multi_label=False
|
| 148 |
)
|
| 149 |
|
| 150 |
-
# ๊ฒฐ๊ณผ ํฌ๋งทํ
|
| 151 |
top_category = result['labels'][0]
|
| 152 |
top_score = result['scores'][0]
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# ๊ท์น ๊ธฐ๋ฐ ํ์ฒ๋ฆฌ: ๋๋ฐฐ๋ก ๋ถ๋ฅ๋์์ง๋ง ์ค์ ๋ก๋ ์๋ฏธ ์๋ ๋ด์ฉ์ด ์๋ ๊ฒฝ์ฐ
|
| 156 |
-
if category == "๋จ์ ๋๋ฐฐ":
|
| 157 |
-
if not self.is_spam_review(review_text):
|
| 158 |
-
# ์ค์ ๋๋ฐฐ๊ฐ ์๋๋ฏ๋ก ๋ ๋ฒ์งธ๋ก ๋์ ์นดํ
๊ณ ๋ฆฌ ์ ํ
|
| 159 |
-
second_category = result['labels'][1]
|
| 160 |
-
second_score = result['scores'][1]
|
| 161 |
-
category = self.category_mapping[second_category]
|
| 162 |
-
top_score = second_score
|
| 163 |
-
print(f"[๊ท์น ๊ธฐ๋ฐ ์ฌ๋ถ๋ฅ] ๋๋ฐฐ๊ฐ ์๋ ๊ฒ์ผ๋ก ํ๋จ -> {category} (ํ์ ๋: {second_score:.2%})")
|
| 164 |
-
|
| 165 |
-
# ํผํฉ ๊ฐ์ ๊ฐ์ง: ๊ธ์ ๊ณผ ๋ถ์ ์ ์๊ฐ ๋น์ทํ ๊ฒฝ์ฐ
|
| 166 |
scores_dict = {
|
| 167 |
-
self.
|
| 168 |
for label, score in zip(result['labels'], result['scores'])
|
| 169 |
}
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
score_diff = abs(positive_score - negative_score)
|
| 177 |
-
if score_diff < 0.15 and min(positive_score, negative_score) > 0.2:
|
| 178 |
-
category = f"{category} (ํผํฉ ๊ฐ์ )"
|
| 179 |
-
print(f"[ํผํฉ ๊ฐ์ ๊ฐ์ง] ๊ธ์ : {positive_score:.2%}, ๋ถ์ : {negative_score:.2%}")
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
return {
|
| 186 |
-
"
|
| 187 |
-
"
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
self.category_mapping[label]: round(score * 100, 2)
|
| 191 |
-
for label, score in zip(result['labels'], result['scores'])
|
| 192 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
"timestamp": datetime.now().isoformat()
|
| 194 |
}
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
def analyze_reviews(self, reviews: List[str]) -> List[Dict]:
|
| 197 |
"""
|
| 198 |
์ฌ๋ฌ ๋ฆฌ๋ทฐ๋ฅผ ์ผ๊ด ๋ถ์ํฉ๋๋ค.
|
|
@@ -213,18 +649,18 @@ class ReviewAnalyzer:
|
|
| 213 |
def print_results(self, results: List[Dict]):
|
| 214 |
"""๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ธฐ ์ข๊ฒ ์ถ๋ ฅํฉ๋๋ค."""
|
| 215 |
print("\n" + "="*80)
|
| 216 |
-
print("๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ")
|
| 217 |
print("="*80)
|
| 218 |
|
| 219 |
for idx, result in enumerate(results, 1):
|
| 220 |
print(f"\n[๋ฆฌ๋ทฐ #{idx}]")
|
| 221 |
print(f"๋ด์ฉ: {result['review']}")
|
| 222 |
-
print(f"
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
print("\n" + "="*80)
|
| 230 |
|
|
@@ -251,7 +687,7 @@ class ReviewAnalyzer:
|
|
| 251 |
reviews.append(row['review_text'])
|
| 252 |
return reviews
|
| 253 |
|
| 254 |
-
def analyze_for_gradio(self, review_text: str)
|
| 255 |
"""
|
| 256 |
Gradio UI์ฉ ๋ฆฌ๋ทฐ ๋ถ์ ํจ์
|
| 257 |
|
|
@@ -259,58 +695,104 @@ class ReviewAnalyzer:
|
|
| 259 |
review_text: ๋ถ์ํ ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 260 |
|
| 261 |
Returns:
|
| 262 |
-
(
|
| 263 |
"""
|
| 264 |
if not review_text or review_text.strip() == "":
|
| 265 |
-
return "โ ๏ธ ๋ฆฌ๋ทฐ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์", "", {}
|
| 266 |
|
| 267 |
-
result = self.analyze_review(review_text)
|
| 268 |
|
| 269 |
-
#
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
| 282 |
else:
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
|
| 298 |
-
|
|
|
|
|
|
|
| 299 |
|
| 300 |
-
|
| 301 |
|
| 302 |
-
|
| 303 |
-
"""
|
| 304 |
-
|
| 305 |
-
details += f"\n- **{category}**: {score}%"
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
|
| 316 |
# ์ ์ญ ๋ถ์๊ธฐ ์ธ์คํด์ค (Gradio ์ฑ ์์ ์ ํ ๋ฒ๋ง ๋ก๋)
|
|
@@ -331,114 +813,190 @@ def create_gradio_app():
|
|
| 331 |
# ๋ถ์๊ธฐ ์ด๊ธฐํ
|
| 332 |
review_analyzer = get_analyzer()
|
| 333 |
|
| 334 |
-
# ์ํ ๋ฆฌ๋ทฐ ์์
|
| 335 |
examples = [
|
| 336 |
["์ ๋ง ์ข์ ์ ํ์ด์์! ๋ฐฐ์ก๋ ๏ฟฝ๏ฟฝ๋ฅด๊ณ ํ์ง๋ ํ๋ฅญํฉ๋๋ค. ๋ค์์๋ ๋ ๊ตฌ๋งคํ ๊ฒ์!"],
|
| 337 |
["์์ ์ค๋ง์ด์์. ์ฌ์ง์ด๋ ์์ ๋ค๋ฅด๊ณ ํ์ง๋ ๋ณ๋ก์
๋๋ค. ํ๋ถ ์ ์ฒญํ์ต๋๋ค."],
|
| 338 |
["ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
"],
|
| 339 |
["ํ
๋ ๊ทธ๋จ @abcd1234๋ก ์ฐ๋ฝ์ฃผ์๋ฉด ๋ฐ๊ฐ์ ๋๋ฆฝ๋๋ค. ๋๋งค๊ฐ๋ก ํ๋งค์ค!"],
|
| 340 |
-
["์ด๊ฒ ๋ญ์ผ ์ง์ง ์์ ์ฐ๋ ๊ธฐ๋ค์. ๋ ์๊น์ต๋๋ค."],
|
| 341 |
-
["ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
ใ
"],
|
| 342 |
["๋ฐฐ์ก์ด ์๊ฐ๋ณด๋ค ๋นจ๋ผ์ ์ข์์ด์. ํ์ง๋ ๊ด์ฐฎ๊ณ ๊ฐ๊ฒฉ๋๋น ๋ง์กฑํฉ๋๋ค."],
|
|
|
|
|
|
|
| 343 |
]
|
| 344 |
|
| 345 |
-
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
| 346 |
-
with gr.Blocks(
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
-
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
|
| 355 |
-
- โ
๊ตฌ์ฒด์ ์ด๊ณ ์ค๋ช
์ ์ธ ๊ฐ์ค(hypothesis) ์ฌ์ฉ์ผ๋ก ๋ถ๋ฅ ์ ํ๋ ํฅ์
|
| 356 |
-
- โ
๊ท์น ๊ธฐ๋ฐ ํ์ฒ๋ฆฌ๋ก ๋๋ฐฐ ์ค๋ถ๋ฅ ๋ฐฉ์ง (์๋ฏธ ์๋ ๋จ์ด ๊ฐ์, ๊ณ ์ ๋ฌธ์ ๋น์จ ์ฒดํฌ)
|
| 357 |
-
- โ
ํผํฉ ๊ฐ์ ๊ฐ์ง (๊ธ์ ๊ณผ ๋ถ์ ์ด ๊ณต์กดํ๋ ๋ฆฌ๋ทฐ ์๋ ์ธ์)
|
| 358 |
-
- โ
ํ
์คํธ ์ ์ฒ๋ฆฌ ๋ฐ ์ ๊ทํ๋ก ๋
ธ์ด์ฆ ์ ๊ฑฐ
|
| 359 |
-
- โ
ํ์ ๋ ์๊ณ๊ฐ ์ค์ ์ผ๋ก ๋ถํ์คํ ์ผ์ด์ค ๊ตฌ๋ถ
|
| 360 |
""")
|
| 361 |
|
|
|
|
| 362 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
with gr.Column(scale=1):
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
placeholder="๋ฆฌ๋ทฐ ๋ด์ฉ์ ์
๋ ฅํ์ธ์...",
|
| 367 |
-
lines=5,
|
| 368 |
-
max_lines=10
|
| 369 |
-
)
|
| 370 |
-
|
| 371 |
-
with gr.Row():
|
| 372 |
-
clear_btn = gr.Button("๐๏ธ ์ง์ฐ๊ธฐ", variant="secondary")
|
| 373 |
-
submit_btn = gr.Button("๐ ๋ถ์ํ๊ธฐ", variant="primary")
|
| 374 |
-
|
| 375 |
-
gr.Examples(
|
| 376 |
-
examples=examples,
|
| 377 |
-
inputs=review_input,
|
| 378 |
-
label="์์ ๋ฆฌ๋ทฐ"
|
| 379 |
-
)
|
| 380 |
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
)
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
num_top_classes=5
|
| 391 |
-
)
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
|
| 398 |
submit_btn.click(
|
| 399 |
fn=review_analyzer.analyze_for_gradio,
|
| 400 |
inputs=review_input,
|
| 401 |
-
outputs=[
|
|
|
|
| 402 |
)
|
| 403 |
|
| 404 |
review_input.submit(
|
| 405 |
fn=review_analyzer.analyze_for_gradio,
|
| 406 |
inputs=review_input,
|
| 407 |
-
outputs=[
|
|
|
|
| 408 |
)
|
| 409 |
|
| 410 |
clear_btn.click(
|
| 411 |
-
fn=lambda: ("", "", "", {}),
|
| 412 |
inputs=None,
|
| 413 |
-
outputs=[review_input,
|
|
|
|
| 414 |
)
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
๐ก **TIP:** ์ด๋ชจํฐ์ฝ์ด๋ ํน์๋ฌธ์๊ฐ ์์ด๋ ์๋ฏธ ์๋ ๋ด์ฉ์ด ์๋ค๋ฉด ์ ํํ๊ฒ ๋ถ๋ฅํฉ๋๋ค!
|
| 441 |
-
""")
|
| 442 |
|
| 443 |
return demo
|
| 444 |
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
๋ฆฌ๋ทฐ ์๋ ๊ฒ์ ์๋น์ค
|
| 4 |
+
Hugging Face์ Zero-Shot Classification ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ๋ฆฌ๋ทฐ๋ฅผ 3๋จ๊ณ๋ก ๋ถ์ํฉ๋๋ค.
|
| 5 |
+
|
| 6 |
+
๋ถ์ ๋จ๊ณ:
|
| 7 |
+
1. ๊ฐ์ ๋ถ์: ๊ธ์ / ์ค๋ฆฝ / ๋ถ์
|
| 8 |
+
2. ์นดํ
๊ณ ๋ฆฌ ๋ถ์: ๋ฐฐ์ก / ํ์ง / ์ฌ์ด์ฆ / ๊ตํ / ์๋น์ค ๋ฑ
|
| 9 |
+
3. ๋ฆฌ๋ทฐ ํค ํ์ง: ๋จ์ ๋ถ๋ง / ์์ค / ํ์ํ๊ธฐ / ๊ด๊ณ ๋ฑ
|
| 10 |
"""
|
| 11 |
|
| 12 |
from transformers import pipeline
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
class ReviewAnalyzer:
|
| 22 |
+
"""๋ฆฌ๋ทฐ๋ฅผ 3๋จ๊ณ๋ก ๋ถ์ํ๋ ํด๋์ค
|
| 23 |
+
|
| 24 |
+
1. ๊ฐ์ ๋ถ์: ๊ธ์ / ์ค๋ฆฝ / ๋ถ์
|
| 25 |
+
2. ์นดํ
๊ณ ๋ฆฌ ๋ถ์: ๋ฐฐ์ก / ํ์ง / ์ฌ์ด์ฆ / ๊ตํ / ์๋น์ค ๋ฑ
|
| 26 |
+
3. ๋ฆฌ๋ทฐ ํค ํ์ง: ๋จ์ ๋ถ๋ง / ์์ค / ํ์ํ๊ธฐ / ๊ด๊ณ ๋ฑ
|
| 27 |
+
"""
|
| 28 |
|
| 29 |
+
def __init__(self):
|
| 30 |
"""Zero-Shot Classification ํ์ดํ๋ผ์ธ ์ด๊ธฐํ"""
|
| 31 |
print("๋ชจ๋ธ ๋ก๋ฉ ์ค...")
|
| 32 |
# ํ๊ตญ์ด๋ฅผ ์ ์ดํดํ๋ multilingual ๋ชจ๋ธ ์ฌ์ฉ
|
|
|
|
| 35 |
model="MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# 1๋จ๊ณ: ๊ฐ์ ๋ถ์ (๊ฐ์ ๋ ํ๋กฌํํธ - ๊ตฌ์ฒด์ ์์ ํฌํจ)
|
| 39 |
+
self.sentiment_categories = [
|
| 40 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ๋ง์กฑํ๋ฉฐ ์ข์ํ๊ณ ์ถ์ฒํ๋ ๊ธ์ ์ ์ธ ๊ฐ์ ์ ํํํฉ๋๋ค. ์: ์ข์์, ๋ง์กฑ, ์ถ์ฒ, ํ๋ฅญ, ์ต๊ณ , ๊ฐ์ฌ, ๋ง์์ ๋ค์ด์",
|
| 41 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ๋ํด ์ค๋ฆฝ์ ์ด๊ณ ๊ฐ๊ด์ ์ผ๋ก ์ฌ์ค์ด๋ ์ํ๋ง์ ๋์ดํ๋ฉฐ ํน๋ณํ ๊ฐ์ ํํ์ด ์์ต๋๋ค. ์: ๊ทธ๋ฅ ๊ทธ๋์, ๋ณดํต, ๋ฌด๋, ํ๋ฒ",
|
| 42 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ์ค๋งํ๊ณ ๋ถ๋ง์กฑ์ค๋ฌ์ด ๋ถ์ ์ ์ธ ๊ฐ์ ์ ํํํฉ๋๋ค. ์: ๋ณ๋ก, ์ค๋ง, ๋ถ๋ง์กฑ, ์ต์
, ํ๋จ, ํํ, ํ๋ถ"
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
self.sentiment_mapping = {
|
| 46 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ๋ง์กฑํ๋ฉฐ ์ข์ํ๊ณ ์ถ์ฒํ๋ ๊ธ์ ์ ์ธ ๊ฐ์ ์ ํํํฉ๋๋ค. ์: ์ข์์, ๋ง์กฑ, ์ถ์ฒ, ํ๋ฅญ, ์ต๊ณ , ๊ฐ์ฌ, ๋ง์์ ๋ค์ด์": "๊ธ์ ",
|
| 47 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ๋ํด ์ค๋ฆฝ์ ์ด๊ณ ๊ฐ๊ด์ ์ผ๋ก ์ฌ์ค์ด๋ ์ํ๋ง์ ๋์ดํ๋ฉฐ ํน๋ณํ ๊ฐ์ ํํ์ด ์์ต๋๋ค. ์: ๊ทธ๋ฅ ๊ทธ๋์, ๋ณดํต, ๋ฌด๋, ํ๋ฒ": "์ค๋ฆฝ",
|
| 48 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ์ด๋ ์๋น์ค์ ์ค๋งํ๊ณ ๋ถ๋ง์กฑ์ค๋ฌ์ด ๋ถ์ ์ ์ธ ๊ฐ์ ์ ํํํฉ๋๋ค. ์: ๋ณ๋ก, ์ค๋ง, ๋ถ๋ง์กฑ, ์ต์
, ํ๋จ, ํํ, ๏ฟฝ๏ฟฝ๋ถ": "๋ถ์ "
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
# 2๋จ๊ณ: ์นดํ
๊ณ ๋ฆฌ ๋ถ์ (๊ฐ์ ๋ ํ๋กฌํํธ)
|
| 52 |
+
self.topic_categories = [
|
| 53 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋ฐฐ์ก๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๋ฐฐ์ก ๋น ๋ฆ, ๋ฐฐ์ก ๋ฆ์, ํฌ์ฅ ์ํ, ํ๋ฐฐ, ๋์ฐฉ, ํ์",
|
| 54 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ํ์ง๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ์ฌ์ง, ๋ด๊ตฌ์ฑ, ์์ฑ๋, ํ์ง ์ข์, ํ์ง ๋์จ, ํผํผ, ์ฝํจ",
|
| 55 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ์ฌ์ด์ฆ์ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ํฌ๊ธฐ, ์ฌ์ด์ฆ, ํ, ์์, ํผ, ๋ฑ ๋ง์, ์น์",
|
| 56 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ตํ/ํ๋ถ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ตํ, ํ๋ถ, ๋ฐํ, ํ๋ถ ์ ์ฒญ, ๊ตํ ์ ์ฐจ",
|
| 57 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ณ ๊ฐ ์๋น์ค์ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ณ ๊ฐ์ผํฐ, ์๋, ์๋ด, A/S, ์น์ , ๋ถ์น์ ",
|
| 58 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ฐ๊ฒฉ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ฐ๊ฒฉ, ๊ฐ์ฑ๋น, ๋น์, ์ ๋ ด, ํ ์ธ, ๋น์ฉ, ๋",
|
| 59 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋์์ธ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๋์์ธ, ์์, ์ธ๊ด, ์์จ, ์คํ์ผ, ๋ชจ์, ์๊น",
|
| 60 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ๊ธฐ๋ฅ/์ฑ๋ฅ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ธฐ๋ฅ, ์ฑ๋ฅ, ์๋, ํจ๊ณผ, ์ฌ์ฉ๊ฐ, ํธ๋ฆฌํจ"
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
self.topic_mapping = {
|
| 64 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋ฐฐ์ก๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๋ฐฐ์ก ๋น ๋ฆ, ๋ฐฐ์ก ๋ฆ์, ํฌ์ฅ ์ํ, ํ๋ฐฐ, ๋์ฐฉ, ํ์": "๋ฐฐ์ก",
|
| 65 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ํ์ง๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ์ฌ์ง, ๋ด๊ตฌ์ฑ, ์์ฑ๋, ํ์ง ์ข์, ํ์ง ๋์จ, ํผํผ, ์ฝํจ": "ํ์ง",
|
| 66 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ์ฌ์ด์ฆ์ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ํฌ๊ธฐ, ์ฌ์ด์ฆ, ํ, ์์, ํผ, ๋ฑ ๋ง์, ์น์": "์ฌ์ด์ฆ",
|
| 67 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ตํ/ํ๋ถ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ตํ, ํ๋ถ, ๋ฐํ, ํ๋ถ ์ ์ฒญ, ๊ตํ ์ ์ฐจ": "๊ตํ/ํ๋ถ",
|
| 68 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ณ ๊ฐ ์๋น์ค์ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ณ ๊ฐ์ผํฐ, ์๋, ์๋ด, A/S, ์น์ , ๋ถ์น์ ": "์๋น์ค",
|
| 69 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๊ฐ๊ฒฉ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ฐ๊ฒฉ, ๊ฐ์ฑ๋น, ๋น์, ์ ๋ ด, ํ ์ธ, ๋น์ฉ, ๋": "๊ฐ๊ฒฉ",
|
| 70 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋์์ธ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๋์์ธ, ์์, ์ธ๊ด, ์์จ, ์คํ์ผ, ๋ชจ์, ์๊น": "๋์์ธ",
|
| 71 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ํ ๊ธฐ๋ฅ/์ฑ๋ฅ๊ณผ ๊ด๋ จ๋ ๋ด์ฉ์ ์ธ๊ธํฉ๋๋ค. ์: ๊ธฐ๋ฅ, ์ฑ๋ฅ, ์๋, ํจ๊ณผ, ์ฌ์ฉ๊ฐ, ํธ๋ฆฌํจ": "๊ธฐ๋ฅ/์ฑ๋ฅ"
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# 3๋จ๊ณ: ๋ฆฌ๋ทฐ ํค ํ์ง (๊ฐ์ ๋ ํ๋กฌํํธ)
|
| 75 |
+
self.tone_categories = [
|
| 76 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ์์ ์ธ ๋ถ๋ง ํํ์ผ๋ก ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ ์ ์ ์ฐจ๋ถํ ์ง์ ํฉ๋๋ค. ์: ์์ฝ๋ค, ๊ฐ์ ํ์, ๋ถํธํ๋ค, ๋ฌธ์ ์์",
|
| 77 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์์ค์ด๋ ๋น์์ด๋ฅผ ํฌํจํ์ฌ ๊ณต๊ฒฉ์ ์ด๊ณ ๋ถ์ ์ ํ ์ธ์ด๋ฅผ ์ฌ์ฉํฉ๋๋ค. ์: ์์ค, ๋น๋, ์ ์ฃผ, ๊ณต๊ฒฉ์ ํํ",
|
| 78 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ค์ ๊ตฌ๋งค ์์ด ์์ฑ๋ ํ์ ํ๊ธฐ์ด๊ฑฐ๋ ์ง๋์น๊ฒ ๊ณผ์ฅ๋๊ณ ์์ฌ์ค๋ฌ์ด ๋ด์ฉ์
๋๋ค. ์: ๋นํ์ค์ ์นญ์ฐฌ, ๊ตฌ์ฒด์ฑ ๋ถ์กฑ, ๋ฐ๋ณต ๋ฆฌ๋ทฐ",
|
| 79 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋ค๋ฅธ ์ฌ์ดํธ๋ ํ๋งค์๋ฅผ ํ๋ณดํ๊ฑฐ๋ ์ฐ๋ฝ์ฒ๋ฅผ ๋จ๊ธฐ๋ ๊ด๊ณ ์ฑ ์คํธ ๋ด์ฉ์
๋๋ค. ์: ํ
๋ ๊ทธ๋จ, ์นดํก, ์ฐ๋ฝ์ฒ, ํ๋ณด ๋งํฌ",
|
| 80 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ์์ ์ธ ๊ตฌ๋งค ํ๊ธฐ๋ก ์ง์ํ๊ฒ ์์ฑ๋์์ผ๋ฉฐ ํน๋ณํ ๋ฌธ์ ๊ฐ ์์ต๋๋ค"
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
self.tone_mapping = {
|
| 84 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ์์ ์ธ ๋ถ๋ง ํํ์ผ๋ก ๊ตฌ์ฒด์ ์ธ ๋ฌธ์ ์ ์ ์ฐจ๋ถํ ์ง์ ํฉ๋๋ค. ์: ์์ฝ๋ค, ๊ฐ์ ํ์, ๋ถํธํ๋ค, ๋ฌธ์ ์์": "๋จ์ ๋ถ๋ง",
|
| 85 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์์ค์ด๋ ๋น์์ด๋ฅผ ํฌํจํ์ฌ ๊ณต๊ฒฉ์ ์ด๊ณ ๋ถ์ ์ ํ ์ธ์ด๋ฅผ ์ฌ์ฉํฉ๋๋ค. ์: ์์ค, ๋น๋, ์ ์ฃผ, ๊ณต๊ฒฉ์ ํํ": "์์ค",
|
| 86 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ค์ ๊ตฌ๋งค ์์ด ์์ฑ๋ ํ์ ํ๊ธฐ์ด๊ฑฐ๋ ์ง๋์น๊ฒ ๊ณผ์ฅ๋๊ณ ์์ฌ์ค๋ฌ์ด ๋ด์ฉ์
๋๋ค. ์: ๋นํ์ค์ ์นญ์ฐฌ, ๊ตฌ์ฒด์ฑ ๋ถ์กฑ, ๋ฐ๋ณต ๋ฆฌ๋ทฐ": "ํ์ํ๊ธฐ",
|
| 87 |
+
"์ด ๋ฆฌ๋ทฐ๋ ๋ค๋ฅธ ์ฌ์ดํธ๋ ํ๋งค์๋ฅผ ํ๋ณดํ๊ฑฐ๋ ์ฐ๋ฝ์ฒ๋ฅผ ๋จ๊ธฐ๋ ๊ด๊ณ ์ฑ ์คํธ ๋ด์ฉ์
๋๋ค. ์: ํ
๋ ๊ทธ๋จ, ์นดํก, ์ฐ๋ฝ์ฒ, ํ๋ณด ๋งํฌ": "๊ด๊ณ ",
|
| 88 |
+
"์ด ๋ฆฌ๋ทฐ๋ ์ ์์ ์ธ ๊ตฌ๋งค ํ๊ธฐ๋ก ์ง์ํ๊ฒ ์์ฑ๋์์ผ๋ฉฐ ํน๋ณํ ๋ฌธ์ ๊ฐ ์์ต๋๋ค": "์ ์"
|
| 89 |
+
}
|
| 90 |
|
| 91 |
print("๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ!")
|
| 92 |
+
print("โ 3๋จ๊ณ ๋ถ์ ๋ชจ๋ ํ์ฑํ (๊ฐ์ โ ์นดํ
๊ณ ๋ฆฌ โ ํค)")
|
|
|
|
| 93 |
|
| 94 |
def preprocess_text(self, text: str) -> str:
|
| 95 |
"""
|
|
|
|
| 110 |
|
| 111 |
return text
|
| 112 |
|
| 113 |
+
def split_into_sentences(self, text: str) -> List[str]:
|
| 114 |
"""
|
| 115 |
+
ํ
์คํธ๋ฅผ ๋ฌธ์ฅ ๋จ์๋ก ๋ถ๋ฆฌ
|
| 116 |
|
| 117 |
Args:
|
| 118 |
+
text: ์๋ณธ ํ
์คํธ
|
| 119 |
|
| 120 |
Returns:
|
| 121 |
+
๋ฌธ์ฅ ๋ฆฌ์คํธ
|
| 122 |
"""
|
| 123 |
import re
|
| 124 |
|
| 125 |
+
# ๋ฌธ์ฅ ์ข
๊ฒฐ ๊ธฐํธ๋ฅผ ๊ธฐ์ค์ผ๋ก ๋ถ๋ฆฌ (., !, ?, ~, ใ
ใ
, ใ
ใ
๋ฑ ๊ณ ๋ ค)
|
| 126 |
+
# ์ด๋ชจํฐ์ฝ๊ณผ ํน์๋ฌธ์ ํจํด ๋ณด์กด
|
| 127 |
+
sentences = re.split(r'[.!?~]+\s*', text)
|
| 128 |
|
| 129 |
+
# ๋น ๋ฌธ์ฅ ์ ๊ฑฐ ๋ฐ ์ ๋ฆฌ
|
| 130 |
+
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 2]
|
| 131 |
|
| 132 |
+
return sentences if sentences else [text]
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
def analyze_sentiment(self, text: str, use_sentence_split: bool = True) -> Dict:
|
| 135 |
+
"""
|
| 136 |
+
1๋จ๊ณ: ๊ฐ์ ๋ถ์ (๊ธ์ / ์ค๋ฆฝ / ๋ถ์ )
|
| 137 |
|
| 138 |
+
Args:
|
| 139 |
+
text: ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 140 |
+
use_sentence_split: ๋ฌธ์ฅ ๋ถ๋ฆฌ ํ ๋ถ์ ์ฌ๋ถ (๊ธด ๋ฌธ์ฅ ๊ฐ์ ์ฉ)
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
๊ฐ์ ๋ถ์ ๊ฒฐ๊ณผ
|
| 144 |
+
"""
|
| 145 |
+
# ๊ธด ๋ฌธ์ฅ(100์ ์ด์)์ธ ๊ฒฝ์ฐ ๋ฌธ์ฅ ๋ถ๋ฆฌ ํ ๋ถ์
|
| 146 |
+
if use_sentence_split and len(text) > 100:
|
| 147 |
+
sentences = self.split_into_sentences(text)
|
| 148 |
+
|
| 149 |
+
if len(sentences) > 1:
|
| 150 |
+
# ๊ฐ ๋ฌธ์ฅ๋ณ ๊ฐ์ ์ ์ ์์ง
|
| 151 |
+
all_scores = {cat: [] for cat in self.sentiment_mapping.values()}
|
| 152 |
+
|
| 153 |
+
for sentence in sentences:
|
| 154 |
+
result = self.classifier(
|
| 155 |
+
sentence,
|
| 156 |
+
self.sentiment_categories,
|
| 157 |
+
multi_label=False
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ณ ์ ์ ์์ง
|
| 161 |
+
for label, score in zip(result['labels'], result['scores']):
|
| 162 |
+
category = self.sentiment_mapping[label]
|
| 163 |
+
all_scores[category].append(score)
|
| 164 |
+
|
| 165 |
+
# ํ๊ท ์ ์ ๊ณ์ฐ
|
| 166 |
+
avg_scores = {
|
| 167 |
+
cat: sum(scores) / len(scores) if scores else 0
|
| 168 |
+
for cat, scores in all_scores.items()
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
# ๊ฐ์ฅ ๋์ ์ ์์ ๊ฐ์ ์ ํ
|
| 172 |
+
top_sentiment = max(avg_scores.items(), key=lambda x: x[1])
|
| 173 |
+
sentiment = top_sentiment[0]
|
| 174 |
+
confidence = top_sentiment[1]
|
| 175 |
+
|
| 176 |
+
scores_dict = {
|
| 177 |
+
cat: round(score * 100, 2)
|
| 178 |
+
for cat, score in avg_scores.items()
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
return {
|
| 182 |
+
"sentiment": sentiment,
|
| 183 |
+
"confidence": round(confidence * 100, 2),
|
| 184 |
+
"scores": scores_dict,
|
| 185 |
+
"method": "sentence_split"
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
# ๊ธฐ๋ณธ ๋จ์ผ ๋ถ์
|
| 189 |
+
result = self.classifier(
|
| 190 |
+
text,
|
| 191 |
+
self.sentiment_categories,
|
| 192 |
+
multi_label=False
|
| 193 |
+
)
|
| 194 |
|
| 195 |
+
top_category = result['labels'][0]
|
| 196 |
+
top_score = result['scores'][0]
|
| 197 |
+
sentiment = self.sentiment_mapping[top_category]
|
| 198 |
|
| 199 |
+
scores_dict = {
|
| 200 |
+
self.sentiment_mapping[label]: round(score * 100, 2)
|
| 201 |
+
for label, score in zip(result['labels'], result['scores'])
|
| 202 |
+
}
|
| 203 |
|
| 204 |
+
return {
|
| 205 |
+
"sentiment": sentiment,
|
| 206 |
+
"confidence": round(top_score * 100, 2),
|
| 207 |
+
"scores": scores_dict,
|
| 208 |
+
"method": "single"
|
| 209 |
+
}
|
| 210 |
|
| 211 |
+
def analyze_category(self, text: str, top_k: int = 3, use_sentence_split: bool = True, min_threshold: float = 0.25) -> Dict:
|
| 212 |
"""
|
| 213 |
+
2๋จ๊ณ: ์นดํ
๊ณ ๋ฆฌ ๋ถ์ (๋ฐฐ์ก / ํ์ง / ์ฌ์ด์ฆ / ๊ตํ / ์๋น์ค ๋ฑ)
|
| 214 |
|
| 215 |
Args:
|
| 216 |
+
text: ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 217 |
+
top_k: ์์ ๋ช ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ฅผ ๋ฐ๏ฟฝ๏ฟฝํ ์ง (๊ธฐ๋ณธ 3๊ฐ)
|
| 218 |
+
use_sentence_split: ๋ฌธ์ฅ ๋ถ๋ฆฌ ํ ๋ถ์ ์ฌ๋ถ (๊ธด ๋ฌธ์ฅ ๊ฐ์ ์ฉ)
|
| 219 |
+
min_threshold: ์นดํ
๊ณ ๋ฆฌ ์ ํ ์ต์ ์๊ณ๊ฐ (๊ธฐ๋ณธ 0.25 = 25%)
|
| 220 |
|
| 221 |
Returns:
|
| 222 |
+
์นดํ
๊ณ ๋ฆฌ ๋ถ์ ๊ฒฐ๊ณผ
|
| 223 |
"""
|
| 224 |
+
# ๊ธด ๋ฌธ์ฅ์ธ ๊ฒฝ์ฐ ๋ฌธ์ฅ๋ณ๋ก ๋ถ์ ํ ์ง๊ณ
|
| 225 |
+
if use_sentence_split and len(text) > 100:
|
| 226 |
+
sentences = self.split_into_sentences(text)
|
| 227 |
+
|
| 228 |
+
if len(sentences) > 1:
|
| 229 |
+
# ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ณ ์ ์ ๋์
|
| 230 |
+
accumulated_scores = {cat: [] for cat in self.topic_mapping.values()}
|
| 231 |
+
|
| 232 |
+
for sentence in sentences:
|
| 233 |
+
result = self.classifier(
|
| 234 |
+
sentence,
|
| 235 |
+
self.topic_categories,
|
| 236 |
+
multi_label=True
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# ์นดํ
๊ณ ๋ฆฌ๋ณ ์ ์ ์์ง
|
| 240 |
+
for label, score in zip(result['labels'], result['scores']):
|
| 241 |
+
category = self.topic_mapping[label]
|
| 242 |
+
accumulated_scores[category].append(score)
|
| 243 |
+
|
| 244 |
+
# ์ต๋ ์ ์๋ก ์ง๊ณ (์ด๋ ํ ๋ฌธ์ฅ์์๋ผ๋ ๋๊ฒ ๋์ค๋ฉด ํด๋น ์นดํ
๊ณ ๋ฆฌ๋ก ์ธ์ )
|
| 245 |
+
max_scores = {
|
| 246 |
+
cat: max(scores) if scores else 0
|
| 247 |
+
for cat, scores in accumulated_scores.items()
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
# ์ ์ ๊ธฐ์ค์ผ๋ก ์ ๋ ฌ
|
| 251 |
+
sorted_categories = sorted(max_scores.items(), key=lambda x: x[1], reverse=True)
|
| 252 |
+
|
| 253 |
+
# ์์ k๊ฐ ์ ํ (์๊ณ๊ฐ ์ด์๋ง)
|
| 254 |
+
categories = []
|
| 255 |
+
for cat, score in sorted_categories[:top_k]:
|
| 256 |
+
if score >= min_threshold:
|
| 257 |
+
categories.append({
|
| 258 |
+
"category": cat,
|
| 259 |
+
"confidence": round(score * 100, 2)
|
| 260 |
+
})
|
| 261 |
+
|
| 262 |
+
all_scores = {
|
| 263 |
+
cat: round(score * 100, 2)
|
| 264 |
+
for cat, score in sorted_categories
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
return {
|
| 268 |
+
"main_categories": categories,
|
| 269 |
+
"all_scores": all_scores,
|
| 270 |
+
"method": "sentence_split"
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
# ๊ธฐ๋ณธ ๋จ์ผ ๋ถ์
|
| 274 |
+
result = self.classifier(
|
| 275 |
+
text,
|
| 276 |
+
self.topic_categories,
|
| 277 |
+
multi_label=True # ์ฌ๋ฌ ์นดํ
๊ณ ๋ฆฌ๊ฐ ๋์์ ํด๋น๋ ์ ์์
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# ์์ k๊ฐ์ ์นดํ
๊ณ ๋ฆฌ ์ถ์ถ
|
| 281 |
+
categories = []
|
| 282 |
+
for i in range(min(top_k, len(result['labels']))):
|
| 283 |
+
label = result['labels'][i]
|
| 284 |
+
score = result['scores'][i]
|
| 285 |
+
# ์๊ณ๊ฐ ์ด์์ ํ์ ๋๋ฅผ ๊ฐ์ง ์นดํ
๊ณ ๋ฆฌ๋ง ํฌํจ
|
| 286 |
+
if score >= min_threshold:
|
| 287 |
+
categories.append({
|
| 288 |
+
"category": self.topic_mapping[label],
|
| 289 |
+
"confidence": round(score * 100, 2)
|
| 290 |
+
})
|
| 291 |
+
|
| 292 |
+
all_scores = {
|
| 293 |
+
self.topic_mapping[label]: round(score * 100, 2)
|
| 294 |
+
for label, score in zip(result['labels'], result['scores'])
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
return {
|
| 298 |
+
"main_categories": categories,
|
| 299 |
+
"all_scores": all_scores,
|
| 300 |
+
"method": "single"
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
def analyze_tone(self, text: str) -> Dict:
|
| 304 |
+
"""
|
| 305 |
+
3๋จ๊ณ: ๋ฆฌ๋ทฐ ํค ํ์ง (๋จ์ ๋ถ๋ง / ์์ค / ํ์ํ๊ธฐ / ๊ด๊ณ ๋ฑ)
|
| 306 |
|
| 307 |
+
Args:
|
| 308 |
+
text: ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
ํค ๋ถ์ ๊ฒฐ๊ณผ
|
| 312 |
+
"""
|
| 313 |
result = self.classifier(
|
| 314 |
+
text,
|
| 315 |
+
self.tone_categories,
|
| 316 |
+
multi_label=False
|
| 317 |
)
|
| 318 |
|
|
|
|
| 319 |
top_category = result['labels'][0]
|
| 320 |
top_score = result['scores'][0]
|
| 321 |
+
tone = self.tone_mapping[top_category]
|
| 322 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
scores_dict = {
|
| 324 |
+
self.tone_mapping[label]: round(score * 100, 2)
|
| 325 |
for label, score in zip(result['labels'], result['scores'])
|
| 326 |
}
|
| 327 |
|
| 328 |
+
return {
|
| 329 |
+
"tone": tone,
|
| 330 |
+
"confidence": round(top_score * 100, 2),
|
| 331 |
+
"scores": scores_dict
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
def generate_rating_from_sentiment(self, category: str, confidence: float, sentiment: str) -> int:
|
| 335 |
+
"""
|
| 336 |
+
์นดํ
๊ณ ๋ฆฌ๋ณ ๊ฐ์ ๊ณผ ํ์ ๋๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ๋ณ์ ์์ฑ
|
| 337 |
+
|
| 338 |
+
Args:
|
| 339 |
+
category: ์นดํ
๊ณ ๋ฆฌ๋ช
|
| 340 |
+
confidence: ํ์ ๋ (0-100)
|
| 341 |
+
sentiment: ๊ฐ์ (๊ธ์ /์ค๋ฆฝ/๋ถ์ )
|
| 342 |
+
|
| 343 |
+
Returns:
|
| 344 |
+
๋ณ์ (1-5)
|
| 345 |
+
"""
|
| 346 |
+
# ๊ธฐ๋ณธ ์ ์: ๊ฐ์ ์ ๋ฐ๋ผ
|
| 347 |
+
if sentiment == "๊ธ์ ":
|
| 348 |
+
base_score = 4.5
|
| 349 |
+
elif sentiment == "์ค๋ฆฝ":
|
| 350 |
+
base_score = 3.0
|
| 351 |
+
else: # ๋ถ์
|
| 352 |
+
base_score = 1.5
|
| 353 |
+
|
| 354 |
+
# ํ์ ๋์ ๋ฐ๋ผ ์ ์ ์กฐ์
|
| 355 |
+
confidence_factor = confidence / 100.0
|
| 356 |
+
final_score = base_score * confidence_factor + 2.5 * (1 - confidence_factor)
|
| 357 |
+
|
| 358 |
+
# 1-5 ์ฌ์ด๋ก ํด๋จํ
|
| 359 |
+
final_score = max(1, min(5, final_score))
|
| 360 |
+
|
| 361 |
+
return round(final_score)
|
| 362 |
+
|
| 363 |
+
def extract_evidence_from_text(self, text: str, category: str) -> str:
|
| 364 |
+
"""
|
| 365 |
+
ํ
์คํธ์์ ํน์ ์นดํ
๊ณ ๋ฆฌ ๊ด๋ จ ๊ทผ๊ฑฐ ๋ฌธ์ฅ ์ถ์ถ
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
text: ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 369 |
+
category: ์นดํ
๊ณ ๋ฆฌ๋ช
|
| 370 |
+
|
| 371 |
+
Returns:
|
| 372 |
+
๊ทผ๊ฑฐ ๋ฌธ์ฅ (๋ฐ์ดํ๋ก ๊ฐ์ธ์ง ํํ)
|
| 373 |
+
"""
|
| 374 |
+
import re
|
| 375 |
+
|
| 376 |
+
# ์นดํ
๊ณ ๋ฆฌ๋ณ ํค์๋ ๋งคํ
|
| 377 |
+
keywords = {
|
| 378 |
+
"๋ฐฐ์ก": ["๋ฐฐ์ก", "ํ๋ฐฐ", "๋์ฐฉ", "ํฌ์ฅ", "๋น ๋ฅด"],
|
| 379 |
+
"ํ์ง": ["ํ์ง", "์ฌ์ง", "ํผํผ", "๋ด๊ตฌ", "์์ฑ๋", "ํธ๋น ์ง", "๋น ์ง"],
|
| 380 |
+
"์ฌ์ด์ฆ": ["์ฌ์ด์ฆ", "ํฌ๊ธฐ", "ํ", "์น์", "๋ง"],
|
| 381 |
+
"๊ตํ/ํ๋ถ": ["๊ตํ", "ํ๋ถ", "๋ฐํ"],
|
| 382 |
+
"์๋น์ค": ["์๋น์ค", "๊ณ ๊ฐ์ผํฐ", "์๋", "์น์ "],
|
| 383 |
+
"๊ฐ๊ฒฉ": ["๊ฐ๊ฒฉ", "๊ฐ์ฑ๋น", "๋น์ธ", "์ ๋ ด", "ํ ์ธ", "๋"],
|
| 384 |
+
"๋์์ธ": ["๋์์ธ", "์์", "์์", "์คํ์ผ", "์ธ๊ด", "์ด์"],
|
| 385 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": ["๊ธฐ๋ฅ", "์ฑ๋ฅ", "์๋", "ํจ๊ณผ", "์ฌ์ฉ"]
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
# ๋ฌธ์ฅ ๋ถ๋ฆฌ
|
| 389 |
+
sentences = re.split(r'[.!?~]+\s*', text)
|
| 390 |
+
|
| 391 |
+
# ์นดํ
๊ณ ๋ฆฌ ํค์๋๊ฐ ํฌํจ๋ ๋ฌธ์ฅ ์ฐพ๊ธฐ
|
| 392 |
+
for sentence in sentences:
|
| 393 |
+
sentence = sentence.strip()
|
| 394 |
+
if category in keywords:
|
| 395 |
+
for keyword in keywords[category]:
|
| 396 |
+
if keyword in sentence and len(sentence) > 5:
|
| 397 |
+
# ๋๋ฌด ๊ธด ๋ฌธ์ฅ์ ์๋ผ๋ด๊ธฐ
|
| 398 |
+
if len(sentence) > 40:
|
| 399 |
+
sentence = sentence[:40] + "..."
|
| 400 |
+
return f'"{sentence}"'
|
| 401 |
+
|
| 402 |
+
return "-"
|
| 403 |
+
|
| 404 |
+
def analyze_sentiment_for_category(self, text: str, category: str) -> str:
|
| 405 |
+
"""
|
| 406 |
+
ํน์ ์นดํ
๊ณ ๋ฆฌ์ ๋ํ ๊ฐ์ ๋ถ์
|
| 407 |
+
|
| 408 |
+
Args:
|
| 409 |
+
text: ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 410 |
+
category: ์นดํ
๊ณ ๋ฆฌ๋ช
|
| 411 |
+
|
| 412 |
+
Returns:
|
| 413 |
+
๊ฐ์ (๊ธ์ /์ค๋ฆฝ/๋ถ์ )
|
| 414 |
+
"""
|
| 415 |
+
import re
|
| 416 |
+
|
| 417 |
+
# ์นดํ
๊ณ ๋ฆฌ ๊ด๋ จ ํค์๋๊ฐ ํฌํจ๋ ๋ฌธ์ฅ ์ฐพ๊ธฐ
|
| 418 |
+
keywords = {
|
| 419 |
+
"๋ฐฐ์ก": ["๋ฐฐ์ก", "ํ๋ฐฐ", "๋์ฐฉ", "ํฌ์ฅ", "๋น ๋ฅด"],
|
| 420 |
+
"ํ์ง": ["ํ์ง", "์ฌ์ง", "ํผํผ", "๋ด๊ตฌ", "์์ฑ๋", "ํธ๋น ์ง", "๋น ์ง"],
|
| 421 |
+
"์ฌ์ด์ฆ": ["์ฌ์ด์ฆ", "ํฌ๊ธฐ", "ํ", "์น์", "๋ง"],
|
| 422 |
+
"๊ตํ/ํ๋ถ": ["๊ตํ", "ํ๋ถ", "๋ฐํ"],
|
| 423 |
+
"์๋น์ค": ["์๋น์ค", "๊ณ ๊ฐ์ผํฐ", "์๋", "์น์ "],
|
| 424 |
+
"๊ฐ๊ฒฉ": ["๊ฐ๊ฒฉ", "๊ฐ์ฑ๋น", "๋น์ธ", "์ ๋ ด", "ํ ์ธ", "๋"],
|
| 425 |
+
"๋์์ธ": ["๋์์ธ", "์์", "์์", "์คํ์ผ", "์ธ๊ด", "์ด์"],
|
| 426 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": ["๊ธฐ๋ฅ", "์ฑ๋ฅ", "์๋", "ํจ๊ณผ", "์ฌ์ฉ"]
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
# ๊ธ์ ํค์๋ (๋ช
์์ ๊ธ์ ํํ)
|
| 430 |
+
positive_keywords = ["์ข", "ํ๋ฅญ", "๋ง์กฑ", "์ต๊ณ ", "์์", "์ด์", "๋ฑ๋ง", "๋น ๋ฅด", "๊ด์ฐฎ"]
|
| 431 |
+
|
| 432 |
+
# ๋ถ์ ํค์๋
|
| 433 |
+
negative_keywords = ["๋ณ๋ก", "์์ฝ", "์ค๋ง", "์ต์
", "์ง์ฆ", "๋ฌธ์ "]
|
| 434 |
+
|
| 435 |
+
sentences = re.split(r'[.!?~]+\s*', text)
|
| 436 |
+
|
| 437 |
+
# ์นดํ
๊ณ ๋ฆฌ ๊ด๋ จ ๋ฌธ์ฅ์์ ๊ฐ์ ํ๋จ
|
| 438 |
+
if category in keywords:
|
| 439 |
+
for sentence in sentences:
|
| 440 |
+
# ์นดํ
๊ณ ๋ฆฌ ํค์๋๊ฐ ํฌํจ๋ ๋ฌธ์ฅ๋ง ๊ฒ์ฌ
|
| 441 |
+
has_category_keyword = False
|
| 442 |
+
for keyword in keywords[category]:
|
| 443 |
+
if keyword in sentence:
|
| 444 |
+
has_category_keyword = True
|
| 445 |
+
break
|
| 446 |
+
|
| 447 |
+
if has_category_keyword:
|
| 448 |
+
# ๊ธ์ ํค์๋ ์ฒดํฌ
|
| 449 |
+
for pos_keyword in positive_keywords:
|
| 450 |
+
if pos_keyword in sentence:
|
| 451 |
+
return "๊ธ์ "
|
| 452 |
+
|
| 453 |
+
# ๋ถ์ ํค์๋ ์ฒดํฌ
|
| 454 |
+
for neg_keyword in negative_keywords:
|
| 455 |
+
if neg_keyword in sentence:
|
| 456 |
+
return "๋ถ์ "
|
| 457 |
|
| 458 |
+
# ๊ธฐ๋ณธ๊ฐ์ ์ค๋ฆฝ
|
| 459 |
+
return "์ค๋ฆฝ"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
+
def generate_comprehensive_analysis(self, review_text: str, analysis_result: Dict) -> Dict:
|
| 462 |
+
"""
|
| 463 |
+
์ข
ํฉ ๋ถ์ ์์ฑ - ํญ๋ชฉ๋ณ ํ๊ฐ ๋ฐ ์์ฝ
|
| 464 |
+
|
| 465 |
+
Args:
|
| 466 |
+
review_text: ์๋ณธ ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 467 |
+
analysis_result: 3๋จ๊ณ ๋ถ์ ๊ฒฐ๊ณผ
|
| 468 |
+
|
| 469 |
+
Returns:
|
| 470 |
+
์ข
ํฉ ๋ถ์ ๊ฒฐ๊ณผ
|
| 471 |
+
"""
|
| 472 |
+
sentiment = analysis_result['sentiment']['sentiment']
|
| 473 |
+
sentiment_scores = analysis_result['sentiment']['scores']
|
| 474 |
+
categories = analysis_result['categories']['main_categories']
|
| 475 |
+
tone = analysis_result['tone']['tone']
|
| 476 |
+
|
| 477 |
+
# ํญ๋ชฉ๋ณ ํ๊ฐ
|
| 478 |
+
item_ratings = []
|
| 479 |
+
for cat_info in categories:
|
| 480 |
+
category = cat_info['category']
|
| 481 |
+
confidence = cat_info['confidence']
|
| 482 |
+
|
| 483 |
+
# ํด๋น ์นดํ
๊ณ ๋ฆฌ์ ๊ฐ์ ๋ถ์
|
| 484 |
+
category_sentiment = self.analyze_sentiment_for_category(review_text, category)
|
| 485 |
+
|
| 486 |
+
# ๋ณ์ ๊ณ์ฐ (์นดํ
๊ณ ๋ฆฌ๋ณ ๊ฐ์ ๊ธฐ๋ฐ)
|
| 487 |
+
if category_sentiment == "๋ถ์ ":
|
| 488 |
+
rating = 2
|
| 489 |
+
elif category_sentiment == "๊ธ์ ":
|
| 490 |
+
rating = self.generate_rating_from_sentiment(category, confidence, sentiment)
|
| 491 |
+
else:
|
| 492 |
+
rating = 3
|
| 493 |
+
|
| 494 |
+
# ๊ทผ๊ฑฐ ์ถ์ถ
|
| 495 |
+
evidence = self.extract_evidence_from_text(review_text, category)
|
| 496 |
+
|
| 497 |
+
item_ratings.append({
|
| 498 |
+
"category": category,
|
| 499 |
+
"rating": rating,
|
| 500 |
+
"evidence": evidence,
|
| 501 |
+
"confidence": confidence
|
| 502 |
+
})
|
| 503 |
+
|
| 504 |
+
# ์ฌ๊ตฌ๋งค ์ํฅ ์ถ์
|
| 505 |
+
repurchase_score = 3 # ๊ธฐ๋ณธ๊ฐ
|
| 506 |
+
if sentiment == "๊ธ์ ":
|
| 507 |
+
repurchase_score = 4
|
| 508 |
+
if sentiment_scores['๊ธ์ '] > 70:
|
| 509 |
+
repurchase_score = 5
|
| 510 |
+
elif sentiment == "๋ถ์ ":
|
| 511 |
+
repurchase_score = 2
|
| 512 |
+
if sentiment_scores['๋ถ์ '] > 70:
|
| 513 |
+
repurchase_score = 1
|
| 514 |
+
else:
|
| 515 |
+
repurchase_score = 3
|
| 516 |
+
|
| 517 |
+
# ์ฌ๊ตฌ๋งค ์ํฅ ๊ทผ๊ฑฐ
|
| 518 |
+
repurchase_keywords = ["๋", "๋ค์", "์ฌ๊ตฌ๋งค", "์ถ์ฒ", "ํ๋ถ", "์ต์
"]
|
| 519 |
+
repurchase_evidence = "-"
|
| 520 |
+
for keyword in repurchase_keywords:
|
| 521 |
+
if keyword in review_text:
|
| 522 |
+
import re
|
| 523 |
+
sentences = re.split(r'[.!?~]+\s*', review_text)
|
| 524 |
+
for sentence in sentences:
|
| 525 |
+
if keyword in sentence and len(sentence.strip()) > 5:
|
| 526 |
+
repurchase_evidence = f'"{sentence.strip()[:40]}"'
|
| 527 |
+
break
|
| 528 |
+
if repurchase_evidence != "-":
|
| 529 |
+
break
|
| 530 |
+
|
| 531 |
+
# ์ ์ฒด ํค ๋น์จ
|
| 532 |
+
positive_ratio = sentiment_scores.get('๊ธ์ ', 0)
|
| 533 |
+
negative_ratio = sentiment_scores.get('๋ถ์ ', 0)
|
| 534 |
+
neutral_ratio = sentiment_scores.get('์ค๋ฆฝ', 0)
|
| 535 |
+
|
| 536 |
+
# ์์ฝ ๋ฌธ์ฅ ์์ฑ
|
| 537 |
+
summary = self.generate_summary_sentence(review_text, item_ratings, sentiment)
|
| 538 |
|
| 539 |
return {
|
| 540 |
+
"item_ratings": item_ratings,
|
| 541 |
+
"repurchase": {
|
| 542 |
+
"rating": repurchase_score,
|
| 543 |
+
"evidence": repurchase_evidence
|
|
|
|
|
|
|
| 544 |
},
|
| 545 |
+
"tone_ratio": {
|
| 546 |
+
"positive": round(positive_ratio),
|
| 547 |
+
"negative": round(negative_ratio),
|
| 548 |
+
"neutral": round(neutral_ratio)
|
| 549 |
+
},
|
| 550 |
+
"summary": summary,
|
| 551 |
+
"overall_sentiment": sentiment
|
| 552 |
+
}
|
| 553 |
+
|
| 554 |
+
def generate_summary_sentence(self, review_text: str, item_ratings: List[Dict], sentiment: str) -> str:
|
| 555 |
+
"""
|
| 556 |
+
์์ฝ ๋ฌธ์ฅ ์๋ ์์ฑ
|
| 557 |
+
|
| 558 |
+
Args:
|
| 559 |
+
review_text: ์๋ณธ ๋ฆฌ๋ทฐ
|
| 560 |
+
item_ratings: ํญ๋ชฉ๋ณ ํ๊ฐ
|
| 561 |
+
sentiment: ์ ์ฒด ๊ฐ์
|
| 562 |
+
|
| 563 |
+
Returns:
|
| 564 |
+
์์ฝ ๋ฌธ์ฅ
|
| 565 |
+
"""
|
| 566 |
+
# ๋์ ํ๊ฐ ํญ๋ชฉ๊ณผ ๋ฎ์ ํ๊ฐ ํญ๋ชฉ ์ฐพ๊ธฐ
|
| 567 |
+
high_rated = [item for item in item_ratings if item['rating'] >= 4]
|
| 568 |
+
low_rated = [item for item in item_ratings if item['rating'] <= 2]
|
| 569 |
+
|
| 570 |
+
if high_rated and low_rated:
|
| 571 |
+
# ์ฅ๋จ์ ์ด ๋ชจ๋ ์๋ ๊ฒฝ์ฐ
|
| 572 |
+
high_cats = ", ".join([item['category'] for item in high_rated[:2]])
|
| 573 |
+
low_cats = ", ".join([item['category'] for item in low_rated[:2]])
|
| 574 |
+
return f"{high_cats}์(๋) ์ข์ง๋ง, {low_cats} ๋ถ๋ถ์ด ์์ฌ์ด ์ ํ์ด์์."
|
| 575 |
+
|
| 576 |
+
elif high_rated:
|
| 577 |
+
# ๊ธ์ ์ ์ธ ๊ฒฝ์ฐ
|
| 578 |
+
high_cats = ", ".join([item['category'] for item in high_rated[:3]])
|
| 579 |
+
return f"{high_cats} ๋ชจ๋ ๋ง์กฑ์ค๋ฌ์ด ์ ํ์ด์์."
|
| 580 |
+
|
| 581 |
+
elif low_rated:
|
| 582 |
+
# ๋ถ์ ์ ์ธ ๊ฒฝ์ฐ
|
| 583 |
+
low_cats = ", ".join([item['category'] for item in low_rated[:3]])
|
| 584 |
+
return f"{low_cats} ๋ถ๋ถ์ด ๊ธฐ๋์ ๋ชป ๋ฏธ์น๋ ์ ํ์ด์์."
|
| 585 |
+
|
| 586 |
+
else:
|
| 587 |
+
# ์ค๋ฆฝ์ ์ธ ๊ฒฝ์ฐ
|
| 588 |
+
if sentiment == "๊ธ์ ":
|
| 589 |
+
return "์ ๋ฐ์ ์ผ๋ก ๋ง์กฑ์ค๋ฌ์ด ์ ํ์ด์์."
|
| 590 |
+
elif sentiment == "๋ถ์ ":
|
| 591 |
+
return "์ ๋ฐ์ ์ผ๋ก ์์ฌ์์ด ๋จ๋ ์ ํ์ด์์."
|
| 592 |
+
else:
|
| 593 |
+
return "๋ฌด๋ํ ์์ค์ ์ ํ์ด์์."
|
| 594 |
+
|
| 595 |
+
def analyze_review(self, review_text: str, include_comprehensive: bool = True) -> Dict:
|
| 596 |
+
"""
|
| 597 |
+
๋จ์ผ ๋ฆฌ๋ทฐ๋ฅผ 3๋จ๊ณ๋ก ๋ถ์ํฉ๋๋ค.
|
| 598 |
+
|
| 599 |
+
Args:
|
| 600 |
+
review_text: ๋ถ์ํ ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 601 |
+
include_comprehensive: ์ข
ํฉ ๋ถ์ ํฌํจ ์ฌ๋ถ
|
| 602 |
+
|
| 603 |
+
Returns:
|
| 604 |
+
3๋จ๊ณ ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ํฌํจํ ๋์
๋๋ฆฌ
|
| 605 |
+
"""
|
| 606 |
+
# ํ
์คํธ ์ ์ฒ๋ฆฌ
|
| 607 |
+
processed_text = self.preprocess_text(review_text)
|
| 608 |
+
|
| 609 |
+
# 1๋จ๊ณ: ๊ฐ์ ๋ถ์
|
| 610 |
+
sentiment_result = self.analyze_sentiment(processed_text)
|
| 611 |
+
|
| 612 |
+
# 2๋จ๊ณ: ์นดํ
๊ณ ๋ฆฌ ๋ถ์
|
| 613 |
+
category_result = self.analyze_category(processed_text)
|
| 614 |
+
|
| 615 |
+
# 3๋จ๊ณ: ํค ๋ถ์
|
| 616 |
+
tone_result = self.analyze_tone(processed_text)
|
| 617 |
+
|
| 618 |
+
result = {
|
| 619 |
+
"review": review_text,
|
| 620 |
+
"sentiment": sentiment_result,
|
| 621 |
+
"categories": category_result,
|
| 622 |
+
"tone": tone_result,
|
| 623 |
"timestamp": datetime.now().isoformat()
|
| 624 |
}
|
| 625 |
|
| 626 |
+
# ์ข
ํฉ ๋ถ์ ์ถ๊ฐ
|
| 627 |
+
if include_comprehensive:
|
| 628 |
+
result["comprehensive"] = self.generate_comprehensive_analysis(review_text, result)
|
| 629 |
+
|
| 630 |
+
return result
|
| 631 |
+
|
| 632 |
def analyze_reviews(self, reviews: List[str]) -> List[Dict]:
|
| 633 |
"""
|
| 634 |
์ฌ๋ฌ ๋ฆฌ๋ทฐ๋ฅผ ์ผ๊ด ๋ถ์ํฉ๋๋ค.
|
|
|
|
| 649 |
def print_results(self, results: List[Dict]):
|
| 650 |
"""๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ธฐ ์ข๊ฒ ์ถ๋ ฅํฉ๋๋ค."""
|
| 651 |
print("\n" + "="*80)
|
| 652 |
+
print("๋ฆฌ๋ทฐ 3๋จ๊ณ ๋ถ์ ๊ฒฐ๊ณผ")
|
| 653 |
print("="*80)
|
| 654 |
|
| 655 |
for idx, result in enumerate(results, 1):
|
| 656 |
print(f"\n[๋ฆฌ๋ทฐ #{idx}]")
|
| 657 |
print(f"๋ด์ฉ: {result['review']}")
|
| 658 |
+
print(f"\n1๏ธโฃ ๊ฐ์ : {result['sentiment']['sentiment']} ({result['sentiment']['confidence']}%)")
|
| 659 |
+
|
| 660 |
+
# ์นดํ
๊ณ ๋ฆฌ ์ถ๋ ฅ
|
| 661 |
+
categories_str = ', '.join([f"{c['category']} ({c['confidence']}%)" for c in result['categories']['main_categories']])
|
| 662 |
+
print(f"2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ: {categories_str}")
|
| 663 |
+
print(f"3๏ธโฃ ํค: {result['tone']['tone']} ({result['tone']['confidence']}%)")
|
| 664 |
|
| 665 |
print("\n" + "="*80)
|
| 666 |
|
|
|
|
| 687 |
reviews.append(row['review_text'])
|
| 688 |
return reviews
|
| 689 |
|
| 690 |
+
def analyze_for_gradio(self, review_text: str):
|
| 691 |
"""
|
| 692 |
Gradio UI์ฉ ๋ฆฌ๋ทฐ ๋ถ์ ํจ์
|
| 693 |
|
|
|
|
| 695 |
review_text: ๋ถ์ํ ๋ฆฌ๋ทฐ ํ
์คํธ
|
| 696 |
|
| 697 |
Returns:
|
| 698 |
+
(๊ฐ์ ๊ฒฐ๊ณผ, ์นดํ
๊ณ ๋ฆฌ ๊ฒฐ๊ณผ, ํค ๊ฒฐ๊ณผ, ์ข
ํฉ ๋ถ์, ๊ฐ์ ๋ถํฌ, ์นดํ
๊ณ ๋ฆฌ ๋ถํฌ, ํค ๋ถํฌ) ํํ
|
| 699 |
"""
|
| 700 |
if not review_text or review_text.strip() == "":
|
| 701 |
+
return "โ ๏ธ ๋ฆฌ๋ทฐ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์", "", "", "", {}, {}, {}
|
| 702 |
|
| 703 |
+
result = self.analyze_review(review_text, include_comprehensive=True)
|
| 704 |
|
| 705 |
+
# 1๋จ๊ณ: ๊ฐ์ ๋ถ์ ๊ฒฐ๊ณผ
|
| 706 |
+
sentiment = result['sentiment']['sentiment']
|
| 707 |
+
sentiment_conf = result['sentiment']['confidence']
|
| 708 |
|
| 709 |
+
sentiment_emoji = {
|
| 710 |
+
"๊ธ์ ": "๐",
|
| 711 |
+
"์ค๋ฆฝ": "๐",
|
| 712 |
+
"๋ถ์ ": "๐"
|
| 713 |
+
}
|
| 714 |
+
emoji = sentiment_emoji.get(sentiment, "โ")
|
| 715 |
+
sentiment_output = f"{emoji} {sentiment} ({sentiment_conf}%)"
|
| 716 |
+
|
| 717 |
+
# 2๋จ๊ณ: ์นดํ
๊ณ ๋ฆฌ ๋ถ์ ๊ฒฐ๊ณผ
|
| 718 |
+
categories = result['categories']['main_categories']
|
| 719 |
+
if categories:
|
| 720 |
+
category_list = [f"โข {c['category']} ({c['confidence']}%)" for c in categories]
|
| 721 |
+
category_output = "\n".join(category_list)
|
| 722 |
else:
|
| 723 |
+
category_output = "ํด๋น ์นดํ
๊ณ ๋ฆฌ ์์"
|
| 724 |
+
|
| 725 |
+
# 3๋จ๊ณ: ํค ๋ถ์ ๊ฒฐ๊ณผ
|
| 726 |
+
tone = result['tone']['tone']
|
| 727 |
+
tone_conf = result['tone']['confidence']
|
| 728 |
+
|
| 729 |
+
tone_emoji = {
|
| 730 |
+
"์ ์": "โ
",
|
| 731 |
+
"๋จ์ ๋ถ๋ง": "๐ฌ",
|
| 732 |
+
"์์ค": "๐ซ",
|
| 733 |
+
"ํ์ํ๊ธฐ": "โ ๏ธ",
|
| 734 |
+
"๊ด๊ณ ": "๐ข"
|
| 735 |
+
}
|
| 736 |
+
tone_emoji_selected = tone_emoji.get(tone, "โ")
|
| 737 |
+
tone_output = f"{tone_emoji_selected} {tone} ({tone_conf}%)"
|
| 738 |
|
| 739 |
+
# 4๋จ๊ณ: ์ข
ํฉ ๋ถ์ ๊ฒฐ๊ณผ
|
| 740 |
+
comprehensive_output = self.format_comprehensive_analysis(result['comprehensive'])
|
| 741 |
+
|
| 742 |
+
# ํ๋ฅ ๋ถํฌ ๋์
๋๋ฆฌ๋ค (Gradio Label ์ปดํฌ๋ํธ์ฉ)
|
| 743 |
+
sentiment_probs = {
|
| 744 |
+
k: v / 100.0 for k, v in result['sentiment']['scores'].items()
|
| 745 |
+
}
|
| 746 |
|
| 747 |
+
category_probs = {
|
| 748 |
+
k: v / 100.0 for k, v in result['categories']['all_scores'].items()
|
| 749 |
+
}
|
| 750 |
|
| 751 |
+
tone_probs = {
|
| 752 |
+
k: v / 100.0 for k, v in result['tone']['scores'].items()
|
| 753 |
+
}
|
| 754 |
|
| 755 |
+
return sentiment_output, category_output, tone_output, comprehensive_output, sentiment_probs, category_probs, tone_probs
|
| 756 |
|
| 757 |
+
def format_comprehensive_analysis(self, comprehensive: Dict) -> str:
|
| 758 |
+
"""
|
| 759 |
+
์ข
ํฉ ๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ๋งํฌ๋ค์ด ํ์์ผ๋ก ํฌ๋งทํ
|
|
|
|
| 760 |
|
| 761 |
+
Args:
|
| 762 |
+
comprehensive: ์ข
ํฉ ๋ถ์ ๋์
๋๋ฆฌ
|
| 763 |
+
|
| 764 |
+
Returns:
|
| 765 |
+
๋งํฌ๋ค์ด ํ์์ ๋ฌธ์์ด
|
| 766 |
+
"""
|
| 767 |
+
output = "## โ๏ธ ์ข
ํฉ ๋ถ์\n\n"
|
| 768 |
+
output += "| ํญ๋ชฉ | ํ๊ฐ | ๊ทผ๊ฑฐ |\n"
|
| 769 |
+
output += "|------|------|------|\n"
|
| 770 |
+
|
| 771 |
+
# ํญ๋ชฉ๋ณ ํ๊ฐ
|
| 772 |
+
for item in comprehensive['item_ratings']:
|
| 773 |
+
stars = "โญ๏ธ" * item['rating']
|
| 774 |
+
output += f"| {item['category']} | {stars} | {item['evidence']} |\n"
|
| 775 |
+
|
| 776 |
+
# ์ฌ๊ตฌ๋งค ์ํฅ
|
| 777 |
+
repurchase_stars = "โญ๏ธ" * comprehensive['repurchase']['rating']
|
| 778 |
+
output += f"| ์ฌ๊ตฌ๋งค ์ํฅ | {repurchase_stars} | {comprehensive['repurchase']['evidence']} |\n"
|
| 779 |
+
|
| 780 |
+
# ์ ์ฒด ํค
|
| 781 |
+
tone_ratio = comprehensive['tone_ratio']
|
| 782 |
+
output += f"| ์ ์ฒด ํค | ๊ธ์ {tone_ratio['positive']} : ๋ถ์ {tone_ratio['negative']} | "
|
| 783 |
+
|
| 784 |
+
if tone_ratio['positive'] > tone_ratio['negative'] + 20:
|
| 785 |
+
output += "๊ธ์ ์ด ์ฐ์ธํจ |\n"
|
| 786 |
+
elif tone_ratio['negative'] > tone_ratio['positive'] + 20:
|
| 787 |
+
output += "๋ถ์ ์ด ์ฐ์ธํจ |\n"
|
| 788 |
+
else:
|
| 789 |
+
output += "๊ธ์ ๊ณผ ๋ถ์ ์ด ํผ์ฌ๋จ |\n"
|
| 790 |
|
| 791 |
+
# ์์ฝ ๋ฌธ์ฅ
|
| 792 |
+
output += f"\n## ๐ก ์์ฝ ๋ฌธ์ฅ\n\n"
|
| 793 |
+
output += f"**\"{comprehensive['summary']}\"**\n"
|
| 794 |
+
|
| 795 |
+
return output
|
| 796 |
|
| 797 |
|
| 798 |
# ์ ์ญ ๋ถ์๊ธฐ ์ธ์คํด์ค (Gradio ์ฑ ์์ ์ ํ ๋ฒ๋ง ๋ก๋)
|
|
|
|
| 813 |
# ๋ถ์๊ธฐ ์ด๊ธฐํ
|
| 814 |
review_analyzer = get_analyzer()
|
| 815 |
|
| 816 |
+
# ์ํ ๋ฆฌ๋ทฐ ์์
|
| 817 |
examples = [
|
| 818 |
["์ ๋ง ์ข์ ์ ํ์ด์์! ๋ฐฐ์ก๋ ๏ฟฝ๏ฟฝ๋ฅด๊ณ ํ์ง๋ ํ๋ฅญํฉ๋๋ค. ๋ค์์๋ ๋ ๊ตฌ๋งคํ ๊ฒ์!"],
|
| 819 |
["์์ ์ค๋ง์ด์์. ์ฌ์ง์ด๋ ์์ ๋ค๋ฅด๊ณ ํ์ง๋ ๋ณ๋ก์
๋๋ค. ํ๋ถ ์ ์ฒญํ์ต๋๋ค."],
|
| 820 |
["ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
"],
|
| 821 |
["ํ
๋ ๊ทธ๋จ @abcd1234๋ก ์ฐ๋ฝ์ฃผ์๋ฉด ๋ฐ๊ฐ์ ๋๋ฆฝ๋๋ค. ๋๋งค๊ฐ๋ก ํ๋งค์ค!"],
|
|
|
|
|
|
|
| 822 |
["๋ฐฐ์ก์ด ์๊ฐ๋ณด๋ค ๋นจ๋ผ์ ์ข์์ด์. ํ์ง๋ ๊ด์ฐฎ๊ณ ๊ฐ๊ฒฉ๋๋น ๋ง์กฑํฉ๋๋ค."],
|
| 823 |
+
["์ฌ์ด์ฆ๊ฐ ๋๋ฌด ์์์. ๊ตํํ๋ ค๊ณ ํ๋๋ฐ ์ ์ฐจ๊ฐ ๋ณต์กํ๋ค์."],
|
| 824 |
+
["๋์์ธ์ ์์๋ฐ ํ์ง์ด ๊ฐ๊ฒฉ์ ๋นํด ๋ณ๋ก์
๋๋ค. ๊ทธ๋ฅ์ ๋ฅ์ด์์."],
|
| 825 |
]
|
| 826 |
|
| 827 |
+
# Gradio ์ธํฐํ์ด์ค ์์ฑ - ๋ชจ๋ ๋์๋ณด๋ ๋ ์ด์์
|
| 828 |
+
with gr.Blocks(
|
| 829 |
+
title="๋ฆฌ๋ทฐ 3๋จ๊ณ ๋ถ์ ์๋น์ค",
|
| 830 |
+
theme=gr.themes.Default(
|
| 831 |
+
primary_hue="blue",
|
| 832 |
+
secondary_hue="slate",
|
| 833 |
+
neutral_hue="slate",
|
| 834 |
+
font=gr.themes.GoogleFont("Noto Sans KR")
|
| 835 |
+
),
|
| 836 |
+
css="""
|
| 837 |
+
.card-header {
|
| 838 |
+
font-size: 1.2em;
|
| 839 |
+
font-weight: bold;
|
| 840 |
+
margin-bottom: 10px;
|
| 841 |
+
padding: 10px;
|
| 842 |
+
border-radius: 8px;
|
| 843 |
+
text-align: center;
|
| 844 |
+
}
|
| 845 |
+
.sentiment-positive { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; }
|
| 846 |
+
.sentiment-neutral { background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); color: white; }
|
| 847 |
+
.sentiment-negative { background: linear-gradient(135deg, #fa709a 0%, #fee140 100%); color: white; }
|
| 848 |
+
.metric-card {
|
| 849 |
+
border: 2px solid #e5e7eb;
|
| 850 |
+
border-radius: 12px;
|
| 851 |
+
padding: 20px;
|
| 852 |
+
background: white;
|
| 853 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
| 854 |
+
}
|
| 855 |
+
.big-emoji { font-size: 3em; text-align: center; margin: 10px 0; }
|
| 856 |
+
.big-text { font-size: 1.8em; font-weight: bold; text-align: center; margin: 5px 0; }
|
| 857 |
+
.confidence { font-size: 1.2em; color: #6b7280; text-align: center; }
|
| 858 |
+
"""
|
| 859 |
+
) as demo:
|
| 860 |
|
| 861 |
+
# ํค๋
|
| 862 |
+
gr.Markdown("""
|
| 863 |
+
# ๐ ๋ฆฌ๋ทฐ ๋ถ์ ๋์๋ณด๋
|
| 864 |
|
| 865 |
+
AI ๊ธฐ๋ฐ 3๋จ๊ณ ๋ถ์์ผ๋ก ๋ฆฌ๋ทฐ๋ฅผ ์๋์ผ๋ก ๊ฒ์ํ๊ณ ์ธ์ฌ์ดํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 866 |
""")
|
| 867 |
|
| 868 |
+
# ์
๋ ฅ ์น์
|
| 869 |
with gr.Row():
|
| 870 |
+
review_input = gr.Textbox(
|
| 871 |
+
label="๐ ๋ฆฌ๋ทฐ ์
๋ ฅ",
|
| 872 |
+
placeholder="๋ถ์ํ ๋ฆฌ๋ทฐ ๋ด์ฉ์ ์
๋ ฅํ์ธ์...",
|
| 873 |
+
lines=4,
|
| 874 |
+
max_lines=8,
|
| 875 |
+
scale=4
|
| 876 |
+
)
|
| 877 |
with gr.Column(scale=1):
|
| 878 |
+
submit_btn = gr.Button("๐ ๋ถ์ ์์", variant="primary", size="lg")
|
| 879 |
+
clear_btn = gr.Button("๐๏ธ ์ด๊ธฐํ", variant="secondary", size="sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 880 |
|
| 881 |
+
gr.Examples(
|
| 882 |
+
examples=examples,
|
| 883 |
+
inputs=review_input,
|
| 884 |
+
label="๐ก ์์ ๋ฆฌ๋ทฐ"
|
| 885 |
+
)
|
|
|
|
| 886 |
|
| 887 |
+
gr.Markdown("---")
|
| 888 |
+
gr.Markdown("## ๐ ๋ถ์ ๊ฒฐ๊ณผ")
|
|
|
|
|
|
|
| 889 |
|
| 890 |
+
# 3๋จ๊ณ ๋ถ์ ๊ฒฐ๊ณผ - 3์ด ์นด๋ ๋ ์ด์์
|
| 891 |
+
with gr.Row(equal_height=True):
|
| 892 |
+
# 1๋จ๊ณ: ๊ฐ์ ๋ถ์
|
| 893 |
+
with gr.Column(scale=1):
|
| 894 |
+
gr.HTML('<div class="card-header sentiment-positive">1๏ธโฃ ๊ฐ์ ๋ถ์</div>')
|
| 895 |
+
with gr.Group(elem_classes="metric-card"):
|
| 896 |
+
sentiment_output = gr.Textbox(
|
| 897 |
+
label="",
|
| 898 |
+
lines=1,
|
| 899 |
+
interactive=False,
|
| 900 |
+
show_label=False,
|
| 901 |
+
container=False,
|
| 902 |
+
elem_classes="big-text"
|
| 903 |
+
)
|
| 904 |
+
sentiment_prob = gr.Label(
|
| 905 |
+
label="ํ๋ฅ ๋ถํฌ",
|
| 906 |
+
num_top_classes=3,
|
| 907 |
+
show_label=True
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
# 2๋จ๊ณ: ์นดํ
๊ณ ๋ฆฌ ๋ถ์
|
| 911 |
+
with gr.Column(scale=1):
|
| 912 |
+
gr.HTML('<div class="card-header sentiment-neutral">2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ ๋ถ์</div>')
|
| 913 |
+
with gr.Group(elem_classes="metric-card"):
|
| 914 |
+
category_output = gr.Textbox(
|
| 915 |
+
label="",
|
| 916 |
+
lines=4,
|
| 917 |
+
interactive=False,
|
| 918 |
+
show_label=False,
|
| 919 |
+
container=False
|
| 920 |
+
)
|
| 921 |
+
category_prob = gr.Label(
|
| 922 |
+
label="ํ๋ฅ ๋ถํฌ",
|
| 923 |
+
num_top_classes=5,
|
| 924 |
+
show_label=True
|
| 925 |
+
)
|
| 926 |
+
|
| 927 |
+
# 3๋จ๊ณ: ํค ํ์ง
|
| 928 |
+
with gr.Column(scale=1):
|
| 929 |
+
gr.HTML('<div class="card-header sentiment-negative">3๏ธโฃ ๋ฆฌ๋ทฐ ํค ํ์ง</div>')
|
| 930 |
+
with gr.Group(elem_classes="metric-card"):
|
| 931 |
+
tone_output = gr.Textbox(
|
| 932 |
+
label="",
|
| 933 |
+
lines=1,
|
| 934 |
+
interactive=False,
|
| 935 |
+
show_label=False,
|
| 936 |
+
container=False,
|
| 937 |
+
elem_classes="big-text"
|
| 938 |
+
)
|
| 939 |
+
tone_prob = gr.Label(
|
| 940 |
+
label="ํ๋ฅ ๋ถํฌ",
|
| 941 |
+
num_top_classes=5,
|
| 942 |
+
show_label=True
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
gr.Markdown("---")
|
| 946 |
+
|
| 947 |
+
# ์ข
ํฉ ๋ถ์ - ์ ์ฒด ๋๋น, ์์ฝ๋์ธ ์คํ์ผ
|
| 948 |
+
with gr.Accordion("โ๏ธ ์ข
ํฉ ๋ถ์ & ์ธ์ฌ์ดํธ", open=True):
|
| 949 |
+
comprehensive_output = gr.Markdown(
|
| 950 |
+
value="",
|
| 951 |
+
show_label=False
|
| 952 |
+
)
|
| 953 |
|
| 954 |
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
|
| 955 |
submit_btn.click(
|
| 956 |
fn=review_analyzer.analyze_for_gradio,
|
| 957 |
inputs=review_input,
|
| 958 |
+
outputs=[sentiment_output, category_output, tone_output, comprehensive_output,
|
| 959 |
+
sentiment_prob, category_prob, tone_prob]
|
| 960 |
)
|
| 961 |
|
| 962 |
review_input.submit(
|
| 963 |
fn=review_analyzer.analyze_for_gradio,
|
| 964 |
inputs=review_input,
|
| 965 |
+
outputs=[sentiment_output, category_output, tone_output, comprehensive_output,
|
| 966 |
+
sentiment_prob, category_prob, tone_prob]
|
| 967 |
)
|
| 968 |
|
| 969 |
clear_btn.click(
|
| 970 |
+
fn=lambda: ("", "", "", "", "", {}, {}, {}),
|
| 971 |
inputs=None,
|
| 972 |
+
outputs=[review_input, sentiment_output, category_output, tone_output,
|
| 973 |
+
comprehensive_output, sentiment_prob, category_prob, tone_prob]
|
| 974 |
)
|
| 975 |
|
| 976 |
+
# ํธํฐ - ์์ฝ๋์ธ์ผ๋ก ์ ์ ์ ์๊ฒ
|
| 977 |
+
with gr.Accordion("โน๏ธ ์์ธ ์ ๋ณด & ์ฌ์ฉ ๊ฐ์ด๋", open=False):
|
| 978 |
+
gr.Markdown("""
|
| 979 |
+
### ๐ ์ฌ์ฉ ๋ฐฉ๋ฒ
|
| 980 |
+
1. ์๋จ ํ
์คํธ ๋ฐ์ค์ ๋ฆฌ๋ทฐ๋ฅผ ์
๋ ฅํ์ธ์
|
| 981 |
+
2. **๋ถ์ ์์** ๋ฒํผ์ ํด๋ฆญํ๊ฑฐ๋ Enter๋ฅผ ๋๋ฅด์ธ์
|
| 982 |
+
3. AI๊ฐ ์๋์ผ๋ก 3๋จ๊ณ ๋ถ์ ๋ฐ ์ข
ํฉ ์ธ์ฌ์ดํธ๋ฅผ ์ ๊ณตํฉ๋๋ค
|
| 983 |
+
|
| 984 |
+
### ๐ฏ 3๋จ๊ณ ๋ถ์ ์ค๋ช
|
| 985 |
+
- **1๏ธโฃ ๊ฐ์ ๋ถ์**: ๋ฆฌ๋ทฐ์ ์ ๋ฐ์ ์ธ ๊ฐ์ (๊ธ์ /์ค๋ฆฝ/๋ถ์ )
|
| 986 |
+
- **2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ ๋ถ์**: ๋ฆฌ๋ทฐ๊ฐ ์ธ๊ธํ๋ ์ฃผ์ (๋ฐฐ์ก/ํ์ง/์ฌ์ด์ฆ/๊ตํ/์๋น์ค/๊ฐ๊ฒฉ/๋์์ธ/๊ธฐ๋ฅ)
|
| 987 |
+
- **3๏ธโฃ ํค ํ์ง**: ๋ฆฌ๋ทฐ์ ์ ๋ขฐ์ฑ ํ๊ฐ (์ ์/๋จ์๋ถ๋ง/์์ค/ํ์ํ๊ธฐ/๊ด๊ณ )
|
| 988 |
+
|
| 989 |
+
### ๐ค ๊ธฐ์ ์คํ
|
| 990 |
+
- **๋ชจ๋ธ**: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
|
| 991 |
+
- **๋ฐฉ์**: Zero-Shot Classification (NLI)
|
| 992 |
+
- **์ง์ ์ธ์ด**: ํ๊ตญ์ด ํฌํจ 100+ ์ธ์ด
|
| 993 |
+
|
| 994 |
+
### ๐ก ํ์ฉ ์ฌ๋ก
|
| 995 |
+
- ๋๋ ๋ฆฌ๋ทฐ์ ๊ฐ์ ํธ๋ ๋ ๋ถ์
|
| 996 |
+
- ์นดํ
๊ณ ๋ฆฌ๋ณ ๋ถ๋ง ์ฌํญ ์๋ ์ง๊ณ
|
| 997 |
+
- ๋ถ์ ์ ํ ๋ฆฌ๋ทฐ ์๋ ํํฐ๋ง (์์ค, ๊ด๊ณ , ํ์ํ๊ธฐ)
|
| 998 |
+
- ์ ํ ๊ฐ์ ๋ฐฉํฅ ๋์ถ์ ์ํ ์ธ์ฌ์ดํธ ์ถ์ถ
|
| 999 |
+
""")
|
|
|
|
|
|
|
| 1000 |
|
| 1001 |
return demo
|
| 1002 |
|
test_comprehensive.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
์ข
ํฉ ๋ถ์ ๊ธฐ๋ฅ ํ
์คํธ
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from app import ReviewAnalyzer
|
| 7 |
+
|
| 8 |
+
def test_comprehensive_analysis():
|
| 9 |
+
"""์ข
ํฉ ๋ถ์ ๊ธฐ๋ฅ ํ
์คํธ"""
|
| 10 |
+
|
| 11 |
+
print("๋ถ์๊ธฐ ์ด๊ธฐํ ์ค...")
|
| 12 |
+
analyzer = ReviewAnalyzer()
|
| 13 |
+
|
| 14 |
+
# ํ
์คํธ ๋ฆฌ๋ทฐ
|
| 15 |
+
test_review = "ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
๊ทธ๋๋ ๋์์ธ์ ์ ๋ง ์์๊ณ ๊ฐ๊ฒฉ๋๋น ๊ด์ฐฎ์ ๊ฒ ๊ฐ์์. ๋ฐฐ์ก๋ ๋น ๋ฅด๊ฒ ์๊ณ ์."
|
| 16 |
+
|
| 17 |
+
print("\n" + "="*80)
|
| 18 |
+
print("ํ
์คํธ ๋ฆฌ๋ทฐ:")
|
| 19 |
+
print(test_review)
|
| 20 |
+
print("="*80)
|
| 21 |
+
|
| 22 |
+
# ๋ถ์ ์คํ
|
| 23 |
+
result = analyzer.analyze_review(test_review, include_comprehensive=True)
|
| 24 |
+
|
| 25 |
+
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
|
| 26 |
+
print("\n๐ 3๋จ๊ณ ๋ถ์ ๊ฒฐ๊ณผ:")
|
| 27 |
+
print(f"1๏ธโฃ ๊ฐ์ : {result['sentiment']['sentiment']} ({result['sentiment']['confidence']}%)")
|
| 28 |
+
|
| 29 |
+
if result['categories']['main_categories']:
|
| 30 |
+
categories_str = ', '.join([f"{c['category']} ({c['confidence']}%)"
|
| 31 |
+
for c in result['categories']['main_categories']])
|
| 32 |
+
print(f"2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ: {categories_str}")
|
| 33 |
+
|
| 34 |
+
print(f"3๏ธโฃ ํค: {result['tone']['tone']} ({result['tone']['confidence']}%)")
|
| 35 |
+
|
| 36 |
+
# ์ข
ํฉ ๋ถ์ ์ถ๋ ฅ
|
| 37 |
+
print("\n" + "="*80)
|
| 38 |
+
print("โ๏ธ ์ข
ํฉ ๋ถ์")
|
| 39 |
+
print("="*80)
|
| 40 |
+
|
| 41 |
+
comprehensive = result['comprehensive']
|
| 42 |
+
|
| 43 |
+
print("\nํญ๋ชฉ๋ณ ํ๊ฐ:")
|
| 44 |
+
print("-" * 80)
|
| 45 |
+
print(f"{'ํญ๋ชฉ':<15} {'ํ๊ฐ':<20} {'๊ทผ๊ฑฐ'}")
|
| 46 |
+
print("-" * 80)
|
| 47 |
+
|
| 48 |
+
for item in comprehensive['item_ratings']:
|
| 49 |
+
stars = "โญ๏ธ" * item['rating']
|
| 50 |
+
print(f"{item['category']:<15} {stars:<20} {item['evidence']}")
|
| 51 |
+
|
| 52 |
+
# ์ฌ๊ตฌ๋งค ์ํฅ
|
| 53 |
+
repurchase_stars = "โญ๏ธ" * comprehensive['repurchase']['rating']
|
| 54 |
+
print(f"{'์ฌ๊ตฌ๋งค ์ํฅ':<15} {repurchase_stars:<20} {comprehensive['repurchase']['evidence']}")
|
| 55 |
+
|
| 56 |
+
# ์ ์ฒด ํค
|
| 57 |
+
tone_ratio = comprehensive['tone_ratio']
|
| 58 |
+
tone_desc = f"๊ธ์ {tone_ratio['positive']} : ๋ถ์ {tone_ratio['negative']}"
|
| 59 |
+
|
| 60 |
+
if tone_ratio['positive'] > tone_ratio['negative'] + 20:
|
| 61 |
+
tone_comment = "๊ธ์ ์ด ์ฐ์ธํจ"
|
| 62 |
+
elif tone_ratio['negative'] > tone_ratio['positive'] + 20:
|
| 63 |
+
tone_comment = "๋ถ์ ์ด ์ฐ์ธํจ"
|
| 64 |
+
else:
|
| 65 |
+
tone_comment = "๊ธ์ ๊ณผ ๋ถ์ ์ด ํผ์ฌ๋จ"
|
| 66 |
+
|
| 67 |
+
print(f"{'์ ์ฒด ํค':<15} {tone_desc:<20} {tone_comment}")
|
| 68 |
+
|
| 69 |
+
# ์์ฝ ๋ฌธ์ฅ
|
| 70 |
+
print("\n" + "="*80)
|
| 71 |
+
print("๐ก ์์ฝ ๋ฌธ์ฅ")
|
| 72 |
+
print("="*80)
|
| 73 |
+
print(f"\"{comprehensive['summary']}\"")
|
| 74 |
+
print("\n" + "="*80)
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
test_comprehensive_analysis()
|
test_long_reviews.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
๊ธด ๋ฌธ์ฅ ๋ถ์ ์ฑ๋ฅ ํ
์คํธ
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from app import ReviewAnalyzer
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
def test_long_reviews():
|
| 10 |
+
"""๊ธด ๋ฌธ์ฅ๊ณผ ๋ณต์กํ ๋ฆฌ๋ทฐ๋ฅผ ํ
์คํธ"""
|
| 11 |
+
|
| 12 |
+
# ๋ถ์๊ธฐ ์ด๊ธฐํ
|
| 13 |
+
print("๋ถ์๊ธฐ ์ด๊ธฐํ ์ค...")
|
| 14 |
+
analyzer = ReviewAnalyzer()
|
| 15 |
+
|
| 16 |
+
# ํ
์คํธ ์ผ์ด์ค: ๊ธด ๋ฌธ์ฅ๊ณผ ๋ณต์กํ ๋ด์ฉ
|
| 17 |
+
test_reviews = [
|
| 18 |
+
{
|
| 19 |
+
"name": "์งง์ ๊ธ์ ๋ฆฌ๋ทฐ",
|
| 20 |
+
"text": "๋ฐฐ์ก๋ ๋น ๋ฅด๊ณ ํ์ง๋ ์ข์์!"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"name": "๊ธด ํผํฉ ๊ฐ์ ๋ฆฌ๋ทฐ",
|
| 24 |
+
"text": "ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
๊ทธ๋๋ ๋์์ธ์ ์ ๋ง ์์๊ณ ๊ฐ๊ฒฉ๋๋น ๊ด์ฐฎ์ ๊ฒ ๊ฐ์์. ๋ฐฐ์ก๋ ๋น ๋ฅด๊ฒ ์๊ณ ์."
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"name": "๋ณต์กํ ๋ถ๋ง ๋ฆฌ๋ทฐ",
|
| 28 |
+
"text": "์ฌ์ง์ด๋ ์์ ๋ค๋ฅด๋ค์. ํ์ง๋ ๋ณ๋ก๊ณ ์ฌ์ด์ฆ๋ ์ ๋ง์์. ํ๋ถ ์ ์ฒญํ๋ ค๊ณ ๊ณ ๊ฐ์ผํฐ์ ์ ํํ๋๋ฐ ์ฐ๊ฒฐ๋ ์๋๊ณ ์ ๋ง ์ต์
์
๋๋ค. ๋ฐฐ์ก์ ๋นจ๋๋๋ฐ ๋ฐ์๋ณด๋ ์ค๋ง์ด์์. ๊ฐ๊ฒฉ๋ ๋น์ผ๋ฐ ์ด ์ ๋ ํ์ง์ด๋ฉด ๋ค์๋ ์ ์ด ๊ฒ ๊ฐ์์."
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"name": "์ฌ๋ฌ ์นดํ
๊ณ ๋ฆฌ ์ธ๊ธ ๋ฆฌ๋ทฐ",
|
| 32 |
+
"text": "๋ฐฐ์ก์ 3์ผ ๊ฑธ๋ ธ์ด์. ํฌ์ฅ์ ๊น๋ํ๊ตฌ์. ์ ํ ์ด์ด๋ณด๋๊น ์๊ฐ๋ณด๋ค ์ฌ์ด์ฆ๊ฐ ์๋๋ผ๊ตฌ์. ํ์ง์ ๊ทธ๋ฅ ๋ฌด๋ํ ์์ค์ด๊ณ ๋์์ธ์ ์ฌ์ง์ด๋ ๋น์ทํด์. ๊ฐ๊ฒฉ ์๊ฐํ๋ฉด ๊ฐ์ฑ๋น๋ ์ข์ ํธ์ธ ๊ฒ ๊ฐ์ต๋๋ค."
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"name": "๊ด๊ณ ์ฑ ๋ฆฌ๋ทฐ",
|
| 36 |
+
"text": "ํ
๋ ๊ทธ๋จ @seller123 ์ผ๋ก ์ฐ๋ฝ์ฃผ์๋ฉด ๋ฐ๊ฐ์ ๋๋ฆฝ๋๋ค. ๋๋งค๊ฐ๋ก ํ๋งค์ค์ด๊ณ ํ์ง ๋ณด์ฅํฉ๋๋ค. ์นดํก ID๋ seller456 ์
๋๋ค."
|
| 37 |
+
}
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
print("\n" + "="*80)
|
| 41 |
+
print("๊ธด ๋ฌธ์ฅ ๋ถ์ ์ฑ๋ฅ ํ
์คํธ")
|
| 42 |
+
print("="*80)
|
| 43 |
+
|
| 44 |
+
results = []
|
| 45 |
+
|
| 46 |
+
for test_case in test_reviews:
|
| 47 |
+
print(f"\n{'='*80}")
|
| 48 |
+
print(f"[ํ
์คํธ: {test_case['name']}]")
|
| 49 |
+
print(f"๋ฆฌ๋ทฐ ๊ธธ์ด: {len(test_case['text'])}์")
|
| 50 |
+
print(f"๋ด์ฉ: {test_case['text']}")
|
| 51 |
+
print(f"{'='*80}")
|
| 52 |
+
|
| 53 |
+
# ๋ถ์ ์คํ
|
| 54 |
+
result = analyzer.analyze_review(test_case['text'])
|
| 55 |
+
|
| 56 |
+
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
|
| 57 |
+
print(f"\n๐ ๋ถ์ ๊ฒฐ๊ณผ:")
|
| 58 |
+
print(f" 1๏ธโฃ ๊ฐ์ : {result['sentiment']['sentiment']} ({result['sentiment']['confidence']}%)")
|
| 59 |
+
|
| 60 |
+
# ๊ฐ์ ์์ธ ์ ์
|
| 61 |
+
print(f" โโ ์์ธ ์ ์: {result['sentiment']['scores']}")
|
| 62 |
+
if 'method' in result['sentiment']:
|
| 63 |
+
print(f" โโ ๋ถ์ ๋ฐฉ๋ฒ: {result['sentiment']['method']}")
|
| 64 |
+
|
| 65 |
+
# ์นดํ
๊ณ ๋ฆฌ
|
| 66 |
+
if result['categories']['main_categories']:
|
| 67 |
+
categories_str = ', '.join([f"{c['category']} ({c['confidence']}%)"
|
| 68 |
+
for c in result['categories']['main_categories']])
|
| 69 |
+
print(f" 2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ: {categories_str}")
|
| 70 |
+
else:
|
| 71 |
+
print(f" 2๏ธโฃ ์นดํ
๊ณ ๋ฆฌ: ์์")
|
| 72 |
+
|
| 73 |
+
if 'method' in result['categories']:
|
| 74 |
+
print(f" โโ ๋ถ์ ๋ฐฉ๋ฒ: {result['categories']['method']}")
|
| 75 |
+
|
| 76 |
+
# ํค
|
| 77 |
+
print(f" 3๏ธโฃ ํค: {result['tone']['tone']} ({result['tone']['confidence']}%)")
|
| 78 |
+
print(f" โโ ์์ธ ์ ์: {result['tone']['scores']}")
|
| 79 |
+
|
| 80 |
+
results.append({
|
| 81 |
+
"test_name": test_case['name'],
|
| 82 |
+
"review_length": len(test_case['text']),
|
| 83 |
+
"result": result
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
# ๊ฒฐ๊ณผ ์ ์ฅ
|
| 87 |
+
with open('test_results.json', 'w', encoding='utf-8') as f:
|
| 88 |
+
json.dump(results, f, ensure_ascii=False, indent=2)
|
| 89 |
+
|
| 90 |
+
print(f"\n{'='*80}")
|
| 91 |
+
print("ํ
์คํธ ์๋ฃ! ๊ฒฐ๊ณผ๊ฐ test_results.json์ ์ ์ฅ๋์์ต๋๋ค.")
|
| 92 |
+
print(f"{'='*80}")
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
test_long_reviews()
|
test_results.json
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"test_name": "์งง์ ๊ธ์ ๋ฆฌ๋ทฐ",
|
| 4 |
+
"review_length": 16,
|
| 5 |
+
"result": {
|
| 6 |
+
"review": "๋ฐฐ์ก๋ ๋น ๋ฅด๊ณ ํ์ง๋ ์ข์์!",
|
| 7 |
+
"sentiment": {
|
| 8 |
+
"sentiment": "๊ธ์ ",
|
| 9 |
+
"confidence": 88.32,
|
| 10 |
+
"scores": {
|
| 11 |
+
"๊ธ์ ": 88.32,
|
| 12 |
+
"๋ถ์ ": 7.98,
|
| 13 |
+
"์ค๋ฆฝ": 3.7
|
| 14 |
+
},
|
| 15 |
+
"method": "single"
|
| 16 |
+
},
|
| 17 |
+
"categories": {
|
| 18 |
+
"main_categories": [
|
| 19 |
+
{
|
| 20 |
+
"category": "๊ธฐ๋ฅ/์ฑ๋ฅ",
|
| 21 |
+
"confidence": 97.75
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"category": "๊ตํ/ํ๋ถ",
|
| 25 |
+
"confidence": 93.9
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"category": "ํ์ง",
|
| 29 |
+
"confidence": 79.36
|
| 30 |
+
}
|
| 31 |
+
],
|
| 32 |
+
"all_scores": {
|
| 33 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": 97.75,
|
| 34 |
+
"๊ตํ/ํ๋ถ": 93.9,
|
| 35 |
+
"ํ์ง": 79.36,
|
| 36 |
+
"๋์์ธ": 71.71,
|
| 37 |
+
"๊ฐ๊ฒฉ": 65.13,
|
| 38 |
+
"๋ฐฐ์ก": 62.87,
|
| 39 |
+
"์ฌ์ด์ฆ": 57.47,
|
| 40 |
+
"์๋น์ค": 8.03
|
| 41 |
+
},
|
| 42 |
+
"method": "single"
|
| 43 |
+
},
|
| 44 |
+
"tone": {
|
| 45 |
+
"tone": "์์ค",
|
| 46 |
+
"confidence": 47.82,
|
| 47 |
+
"scores": {
|
| 48 |
+
"์์ค": 47.82,
|
| 49 |
+
"๋จ์ ๋ถ๋ง": 24.19,
|
| 50 |
+
"๊ด๊ณ ": 17.71,
|
| 51 |
+
"ํ์ํ๊ธฐ": 5.41,
|
| 52 |
+
"์ ์": 4.87
|
| 53 |
+
}
|
| 54 |
+
},
|
| 55 |
+
"timestamp": "2025-11-07T11:12:49.964040"
|
| 56 |
+
}
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"test_name": "๊ธด ํผํฉ ๊ฐ์ ๋ฆฌ๋ทฐ",
|
| 60 |
+
"review_length": 121,
|
| 61 |
+
"result": {
|
| 62 |
+
"review": "ํ๋ ๋์ด์๊ณ ์ฌ์ด์ฆ๋ ๋ฑ๋ง๊ณ ๋ค์ข์๋ฐ ํธ๋น ์ง์ด ์ฅ๋์ด ์๋์์~~๊ฐ์ํ ๋งํ๋ฐ ์๊ทผ ์ง์ฆ๋ ์๋? ๊ทธ๋ฅ ์
์ผ๋ฉด ๊ณ ์์ด๋ง๋ฅ ํธ์ ๋ฟ๋ด์ ใ
ใ
๊ทธ๋๋ ๋์์ธ์ ์ ๋ง ์์๊ณ ๊ฐ๊ฒฉ๋๋น ๊ด์ฐฎ์ ๊ฒ ๊ฐ์์. ๋ฐฐ์ก๋ ๋น ๋ฅด๊ฒ ์๊ณ ์.",
|
| 63 |
+
"sentiment": {
|
| 64 |
+
"sentiment": "๊ธ์ ",
|
| 65 |
+
"confidence": 58.15,
|
| 66 |
+
"scores": {
|
| 67 |
+
"๊ธ์ ": 58.15,
|
| 68 |
+
"์ค๋ฆฝ": 14.88,
|
| 69 |
+
"๋ถ์ ": 26.97
|
| 70 |
+
},
|
| 71 |
+
"method": "sentence_split"
|
| 72 |
+
},
|
| 73 |
+
"categories": {
|
| 74 |
+
"main_categories": [
|
| 75 |
+
{
|
| 76 |
+
"category": "๊ธฐ๋ฅ/์ฑ๋ฅ",
|
| 77 |
+
"confidence": 98.28
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"category": "์ฌ์ด์ฆ",
|
| 81 |
+
"confidence": 97.22
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"category": "๊ฐ๊ฒฉ",
|
| 85 |
+
"confidence": 95.54
|
| 86 |
+
}
|
| 87 |
+
],
|
| 88 |
+
"all_scores": {
|
| 89 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": 98.28,
|
| 90 |
+
"์ฌ์ด์ฆ": 97.22,
|
| 91 |
+
"๊ฐ๊ฒฉ": 95.54,
|
| 92 |
+
"๊ตํ/ํ๋ถ": 94.37,
|
| 93 |
+
"๋ฐฐ์ก": 92.24,
|
| 94 |
+
"๋์์ธ": 91.75,
|
| 95 |
+
"ํ์ง": 82.43,
|
| 96 |
+
"์๋น์ค": 66.15
|
| 97 |
+
},
|
| 98 |
+
"method": "sentence_split"
|
| 99 |
+
},
|
| 100 |
+
"tone": {
|
| 101 |
+
"tone": "๋จ์ ๋ถ๋ง",
|
| 102 |
+
"confidence": 33.84,
|
| 103 |
+
"scores": {
|
| 104 |
+
"๋จ์ ๋ถ๋ง": 33.84,
|
| 105 |
+
"๊ด๊ณ ": 23.01,
|
| 106 |
+
"์์ค": 17.0,
|
| 107 |
+
"์ ์": 16.28,
|
| 108 |
+
"ํ์ํ๊ธฐ": 9.87
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
"timestamp": "2025-11-07T11:12:52.775037"
|
| 112 |
+
}
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"test_name": "๋ณต์กํ ๋ถ๋ง ๋ฆฌ๋ทฐ",
|
| 116 |
+
"review_length": 126,
|
| 117 |
+
"result": {
|
| 118 |
+
"review": "์ฌ์ง์ด๋ ์์ ๋ค๋ฅด๋ค์. ํ์ง๋ ๋ณ๋ก๊ณ ์ฌ์ด์ฆ๋ ์ ๋ง์์. ํ๋ถ ์ ์ฒญํ๋ ค๊ณ ๊ณ ๊ฐ์ผํฐ์ ์ ํํ๋๋ฐ ์ฐ๊ฒฐ๋ ์๋๊ณ ์ ๋ง ์ต์
์
๋๋ค. ๋ฐฐ์ก์ ๋นจ๋๋๋ฐ ๋ฐ์๋ณด๋ ์ค๋ง์ด์์. ๊ฐ๊ฒฉ๋ ๋น์ผ๋ฐ ์ด ์ ๋ ํ์ง์ด๋ฉด ๋ค์๋ ์ ์ด ๊ฒ ๊ฐ์์.",
|
| 119 |
+
"sentiment": {
|
| 120 |
+
"sentiment": "๋ถ์ ",
|
| 121 |
+
"confidence": 47.58,
|
| 122 |
+
"scores": {
|
| 123 |
+
"๊ธ์ ": 44.98,
|
| 124 |
+
"์ค๋ฆฝ": 7.45,
|
| 125 |
+
"๋ถ์ ": 47.58
|
| 126 |
+
},
|
| 127 |
+
"method": "sentence_split"
|
| 128 |
+
},
|
| 129 |
+
"categories": {
|
| 130 |
+
"main_categories": [
|
| 131 |
+
{
|
| 132 |
+
"category": "๊ธฐ๋ฅ/์ฑ๋ฅ",
|
| 133 |
+
"confidence": 97.81
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"category": "๊ตํ/ํ๋ถ",
|
| 137 |
+
"confidence": 95.48
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"category": "๊ฐ๊ฒฉ",
|
| 141 |
+
"confidence": 92.2
|
| 142 |
+
}
|
| 143 |
+
],
|
| 144 |
+
"all_scores": {
|
| 145 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": 97.81,
|
| 146 |
+
"๊ตํ/ํ๋ถ": 95.48,
|
| 147 |
+
"๊ฐ๊ฒฉ": 92.2,
|
| 148 |
+
"ํ์ง": 91.25,
|
| 149 |
+
"๋์์ธ": 89.46,
|
| 150 |
+
"๋ฐฐ์ก": 87.42,
|
| 151 |
+
"์ฌ์ด์ฆ": 81.98,
|
| 152 |
+
"์๋น์ค": 79.33
|
| 153 |
+
},
|
| 154 |
+
"method": "sentence_split"
|
| 155 |
+
},
|
| 156 |
+
"tone": {
|
| 157 |
+
"tone": "๋จ์ ๋ถ๋ง",
|
| 158 |
+
"confidence": 38.45,
|
| 159 |
+
"scores": {
|
| 160 |
+
"๋จ์ ๋ถ๋ง": 38.45,
|
| 161 |
+
"์์ค": 24.59,
|
| 162 |
+
"๊ด๊ณ ": 24.35,
|
| 163 |
+
"ํ์ํ๊ธฐ": 12.27,
|
| 164 |
+
"์ ์": 0.35
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
"timestamp": "2025-11-07T11:12:54.949646"
|
| 168 |
+
}
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"test_name": "์ฌ๋ฌ ์นดํ
๊ณ ๋ฆฌ ์ธ๊ธ ๋ฆฌ๋ทฐ",
|
| 172 |
+
"review_length": 108,
|
| 173 |
+
"result": {
|
| 174 |
+
"review": "๋ฐฐ์ก์ 3์ผ ๊ฑธ๋ ธ์ด์. ํฌ์ฅ์ ๊น๋ํ๊ตฌ์. ์ ํ ์ด์ด๋ณด๋๊น ์๊ฐ๋ณด๋ค ์ฌ์ด์ฆ๊ฐ ์๋๋ผ๊ตฌ์. ํ์ง์ ๊ทธ๋ฅ ๋ฌด๋ํ ์์ค์ด๊ณ ๋์์ธ์ ์ฌ์ง์ด๋ ๋น์ทํด์. ๊ฐ๊ฒฉ ์๊ฐํ๋ฉด ๊ฐ์ฑ๋น๋ ์ข์ ํธ์ธ ๊ฒ ๊ฐ์ต๋๋ค.",
|
| 175 |
+
"sentiment": {
|
| 176 |
+
"sentiment": "๊ธ์ ",
|
| 177 |
+
"confidence": 49.51,
|
| 178 |
+
"scores": {
|
| 179 |
+
"๊ธ์ ": 49.51,
|
| 180 |
+
"์ค๋ฆฝ": 23.29,
|
| 181 |
+
"๋ถ์ ": 27.2
|
| 182 |
+
},
|
| 183 |
+
"method": "sentence_split"
|
| 184 |
+
},
|
| 185 |
+
"categories": {
|
| 186 |
+
"main_categories": [
|
| 187 |
+
{
|
| 188 |
+
"category": "๊ธฐ๋ฅ/์ฑ๋ฅ",
|
| 189 |
+
"confidence": 97.49
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"category": "๊ตํ/ํ๋ถ",
|
| 193 |
+
"confidence": 95.83
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"category": "๋์์ธ",
|
| 197 |
+
"confidence": 92.0
|
| 198 |
+
}
|
| 199 |
+
],
|
| 200 |
+
"all_scores": {
|
| 201 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": 97.49,
|
| 202 |
+
"๊ตํ/ํ๋ถ": 95.83,
|
| 203 |
+
"๋์์ธ": 92.0,
|
| 204 |
+
"๊ฐ๊ฒฉ": 91.82,
|
| 205 |
+
"ํ์ง": 81.67,
|
| 206 |
+
"์ฌ์ด์ฆ": 78.1,
|
| 207 |
+
"๋ฐฐ์ก": 64.56,
|
| 208 |
+
"์๋น์ค": 61.61
|
| 209 |
+
},
|
| 210 |
+
"method": "sentence_split"
|
| 211 |
+
},
|
| 212 |
+
"tone": {
|
| 213 |
+
"tone": "์ ์",
|
| 214 |
+
"confidence": 82.93,
|
| 215 |
+
"scores": {
|
| 216 |
+
"์ ์": 82.93,
|
| 217 |
+
"๋จ์ ๋ถ๋ง": 5.99,
|
| 218 |
+
"ํ์ํ๊ธฐ": 5.13,
|
| 219 |
+
"๊ด๊ณ ": 3.89,
|
| 220 |
+
"์์ค": 2.06
|
| 221 |
+
}
|
| 222 |
+
},
|
| 223 |
+
"timestamp": "2025-11-07T11:12:56.919984"
|
| 224 |
+
}
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"test_name": "๊ด๊ณ ์ฑ ๋ฆฌ๋ทฐ",
|
| 228 |
+
"review_length": 77,
|
| 229 |
+
"result": {
|
| 230 |
+
"review": "ํ
๋ ๊ทธ๋จ @seller123 ์ผ๋ก ์ฐ๋ฝ์ฃผ์๋ฉด ๋ฐ๊ฐ์ ๋๋ฆฝ๋๋ค. ๋๋งค๊ฐ๋ก ํ๋งค์ค์ด๊ณ ํ์ง ๋ณด์ฅํฉ๋๋ค. ์นดํก ID๋ seller456 ์
๋๋ค.",
|
| 231 |
+
"sentiment": {
|
| 232 |
+
"sentiment": "์ค๋ฆฝ",
|
| 233 |
+
"confidence": 44.01,
|
| 234 |
+
"scores": {
|
| 235 |
+
"์ค๋ฆฝ": 44.01,
|
| 236 |
+
"๊ธ์ ": 29.79,
|
| 237 |
+
"๋ถ์ ": 26.2
|
| 238 |
+
},
|
| 239 |
+
"method": "single"
|
| 240 |
+
},
|
| 241 |
+
"categories": {
|
| 242 |
+
"main_categories": [
|
| 243 |
+
{
|
| 244 |
+
"category": "๊ฐ๊ฒฉ",
|
| 245 |
+
"confidence": 13.69
|
| 246 |
+
}
|
| 247 |
+
],
|
| 248 |
+
"all_scores": {
|
| 249 |
+
"๊ฐ๊ฒฉ": 13.69,
|
| 250 |
+
"๊ตํ/ํ๋ถ": 3.63,
|
| 251 |
+
"ํ์ง": 2.39,
|
| 252 |
+
"๊ธฐ๋ฅ/์ฑ๋ฅ": 0.67,
|
| 253 |
+
"๋ฐฐ์ก": 0.64,
|
| 254 |
+
"์ฌ์ด์ฆ": 0.47,
|
| 255 |
+
"๋์์ธ": 0.42,
|
| 256 |
+
"์๋น์ค": 0.41
|
| 257 |
+
},
|
| 258 |
+
"method": "single"
|
| 259 |
+
},
|
| 260 |
+
"tone": {
|
| 261 |
+
"tone": "๊ด๊ณ ",
|
| 262 |
+
"confidence": 52.58,
|
| 263 |
+
"scores": {
|
| 264 |
+
"๊ด๊ณ ": 52.58,
|
| 265 |
+
"๋จ์ ๋ถ๋ง": 21.05,
|
| 266 |
+
"ํ์ํ๊ธฐ": 11.86,
|
| 267 |
+
"์ ์": 9.21,
|
| 268 |
+
"์์ค": 5.3
|
| 269 |
+
}
|
| 270 |
+
},
|
| 271 |
+
"timestamp": "2025-11-07T11:12:57.730285"
|
| 272 |
+
}
|
| 273 |
+
}
|
| 274 |
+
]
|