tokenflow / tokenflow_pnp.py
cocktailpeanut's picture
update
43f619a
raw
history blame
16.6 kB
import glob
import os
import numpy as np
import cv2
from pathlib import Path
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
from PIL import Image
import yaml
from tqdm import tqdm
from transformers import logging
from diffusers import DDIMScheduler, StableDiffusionPipeline
from tokenflow_utils import *
from utils import save_video, seed_everything
# suppress partial model loading warning
logging.set_verbosity_error()
VAE_BATCH_SIZE = 10
class TokenFlow(nn.Module):
def __init__(self, config,
pipe,
frames=None,
# latents = None,
inverted_latents = None):
super().__init__()
self.config = config
self.device = config["device"]
self.to = torch.float16 if self.device == 'cuda' else torch.float32
sd_version = config["sd_version"]
self.sd_version = sd_version
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
elif sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
else:
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
# Create SD models
print('Loading SD model')
# pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
# pipe.enable_xformers_memory_efficient_attention()
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device)
print('SD model loaded')
# data
self.frames, self.inverted_latents = frames, inverted_latents
self.latents_path = self.get_latents_path()
# load frames
self.paths, self.frames, self.latents, self.eps = self.get_data()
if self.sd_version == 'depth':
self.depth_maps = self.prepare_depth_maps()
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"])
# pnp_inversion_prompt = self.get_pnp_inversion_prompt()
self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0]
@torch.no_grad()
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
depth_maps = []
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(self.device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
for i in range(len(self.paths)):
img = cv2.imread(self.paths[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
latent_h = img.shape[0] // 8
latent_w = img.shape[1] // 8
input_batch = transform(img).to(self.device)
prediction = midas(input_batch)
depth_map = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(latent_h, latent_w),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_maps.append(depth_map)
return torch.cat(depth_maps).to(to).to(self.device)
def get_pnp_inversion_prompt(self):
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt')
# read inversion prompt
with open(inv_prompts_path, 'r') as f:
inv_prompt = f.read()
return inv_prompt
def get_latents_path(self):
read_from_files = self.frames is None
# read_from_files = True
if read_from_files:
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
print("n_frames", n_frames)
latents_path = latents_path[np.argmax(n_frames)]
print("latents_path", latents_path)
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
else:
n_frames = self.frames.shape[0]
self.config["n_frames"] = min(n_frames, self.config["n_frames"])
if self.config["n_frames"] % self.config["batch_size"] != 0:
# make n_frames divisible by batch_size
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
print("Number of frames: ", self.config["n_frames"])
if read_from_files:
print("YOOOOOOO", os.path.join(latents_path, 'latents'))
return os.path.join(latents_path, 'latents')
else:
return None
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * 0.18215)
latents = torch.cat(latents)
return latents
@torch.no_grad()
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE):
latents = 1 / 0.18215 * latents
imgs = []
for i in range(0, len(latents), batch_size):
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample)
imgs = torch.cat(imgs)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def get_data(self):
read_from_files = self.frames is None
# read_from_files = True
if read_from_files:
# load frames
paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in
range(self.config["n_frames"])]
if not os.path.exists(paths[0]):
paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in
range(self.config["n_frames"])]
frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(self.to).to(self.device)
save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10)
save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20)
save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30)
else:
frames = self.frames
# encode to latents
latents = self.encode_imgs(frames, deterministic=True).to(self.to).to(self.device)
# get noise
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(self.to).to(self.device)
if not read_from_files:
return None, frames, latents, eps
return paths, frames, latents, eps
def get_ddim_eps(self, latent, indices):
read_from_files = self.inverted_latents is None
# read_from_files = True
if read_from_files:
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
print("noisets:", noisest)
print("indecies:", indices)
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
noisy_latent = torch.load(latents_path)[indices].to(self.device)
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt')
# f_noisy_latent = torch.load(path)[indices].to(self.device)
# print(f_noisy_latent==noisy_latent)
else:
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
print("noisets:", noisest)
print("indecies:", indices)
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
eps = (noisy_latent - mu_T * latent) / sigma_T
return eps
@torch.no_grad()
def denoise_step(self, x, t, indices):
# register the time step and features in pnp injection modules
read_files = self.inverted_latents is None
if read_files:
source_latents = load_source_latents_t(t, self.latents_path)[indices]
else:
source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices]
latent_model_input = torch.cat([source_latents] + ([x] * 2))
if self.sd_version == 'depth':
latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1)
register_time(self, t.item())
# compute text embeddings
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1),
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)])
# apply the denoising network
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
# perform guidance
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
return denoised_latent
@torch.autocast(dtype=torch.float16, device_type='cuda')
def batched_denoise_step(self, x, t, indices):
batch_size = self.config["batch_size"]
denoised_latents = []
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size)
register_pivotal(self, True)
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
register_pivotal(self, False)
for i, b in enumerate(range(0, len(x), batch_size)):
register_batch_idx(self, i)
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
denoised_latents = torch.cat(denoised_latents)
return denoised_latents
def init_method(self, conv_injection_t, qk_injection_t):
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_extended_attention_pnp(self, self.qk_injection_timesteps)
register_conv_injection(self, self.conv_injection_timesteps)
set_tokenflow(self.unet)
def save_vae_recon(self):
os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True)
decoded = self.decode_latents(self.latents)
for i in range(len(decoded)):
T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20)
save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30)
def edit_video(self):
save_files = self.inverted_latents is None # if we're in the original non-demo setting
if save_files:
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
self.save_vae_recon()
# self.save_vae_recon()
pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"])
pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"])
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
if save_files:
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4')
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20)
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30)
print('Done!')
else:
return edited_frames
def sample_loop(self, x, indices):
save_files = self.inverted_latents is None # if we're in the original non-demo setting
# save_files = True
if save_files:
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
x = self.batched_denoise_step(x, t, indices)
decoded_latents = self.decode_latents(x)
if save_files:
for i in range(len(decoded_latents)):
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i)
return decoded_latents
# def run(config):
# seed_everything(config["seed"])
# print(config)
# editor = TokenFlow(config)
# editor.edit_video()
# if __name__ == '__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml')
# opt = parser.parse_args()
# with open(opt.config_path, "r") as f:
# config = yaml.safe_load(f)
# config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}',
# Path(config["data_path"]).stem,
# config["prompt"][:240],
# f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}',
# f'batch_size_{str(config["batch_size"])}',
# str(config["n_timesteps"]),
# )
# os.makedirs(config["output_path"], exist_ok=True)
# print(config["data_path"])
# assert os.path.exists(config["data_path"]), "Data path does not exist"
# with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
# yaml.dump(config, f)
# run(config)