Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This source file is copied from https://github.com/facebookresearch/encodec | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Encodec SEANet-based encoder and decoder implementation.""" | |
import typing as tp | |
import numpy as np | |
import torch.nn as nn | |
import torch | |
from . import SConv1d, SConvTranspose1d, SLSTM | |
def snake(x, alpha): | |
shape = x.shape | |
x = x.reshape(shape[0], shape[1], -1) | |
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2) | |
x = x.reshape(shape) | |
return x | |
class Snake1d(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.alpha = nn.Parameter(torch.ones(1, channels, 1)) | |
def forward(self, x): | |
return snake(x, self.alpha) | |
class SEANetResnetBlock(nn.Module): | |
"""Residual block from SEANet model. | |
Args: | |
dim (int): Dimension of the input/output | |
kernel_sizes (list): List of kernel sizes for the convolutions. | |
dilations (list): List of dilations for the convolutions. | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3) | |
true_skip (bool): Whether to use true skip connection or a simple convolution as the skip connection. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
kernel_sizes: tp.List[int] = [3, 1], | |
dilations: tp.List[int] = [1, 1], | |
activation: str = "ELU", | |
activation_params: dict = {"alpha": 1.0}, | |
norm: str = "weight_norm", | |
norm_params: tp.Dict[str, tp.Any] = {}, | |
causal: bool = False, | |
pad_mode: str = "reflect", | |
compress: int = 2, | |
true_skip: bool = True, | |
): | |
super().__init__() | |
assert len(kernel_sizes) == len( | |
dilations | |
), "Number of kernel sizes should match number of dilations" | |
act = getattr(nn, activation) if activation != "Snake" else Snake1d | |
hidden = dim // compress | |
block = [] | |
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): | |
in_chs = dim if i == 0 else hidden | |
out_chs = dim if i == len(kernel_sizes) - 1 else hidden | |
block += [ | |
act(**activation_params) if activation != "Snake" else act(in_chs), | |
SConv1d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
dilation=dilation, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
), | |
] | |
self.block = nn.Sequential(*block) | |
self.shortcut: nn.Module | |
if true_skip: | |
self.shortcut = nn.Identity() | |
else: | |
self.shortcut = SConv1d( | |
dim, | |
dim, | |
kernel_size=1, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
) | |
def forward(self, x): | |
return self.shortcut(x) + self.block(x) | |
class SEANetEncoder(nn.Module): | |
"""SEANet encoder. | |
Args: | |
channels (int): Audio channels. | |
dimension (int): Intermediate representation dimension. | |
n_filters (int): Base width for the model. | |
n_residual_layers (int): nb of residual layers. | |
ratios (Sequence[int]): kernel size and stride ratios. The encoder uses downsampling ratios instead of | |
upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here | |
that must match the decoder order | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
kernel_size (int): Kernel size for the initial convolution. | |
last_kernel_size (int): Kernel size for the initial convolution. | |
residual_kernel_size (int): Kernel size for the residual layers. | |
dilation_base (int): How much to increase the dilation with each layer. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
true_skip (bool): Whether to use true skip connection or a simple | |
(streamable) convolution as the skip connection in the residual network blocks. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
lstm (int): Number of LSTM layers at the end of the encoder. | |
""" | |
def __init__( | |
self, | |
channels: int = 1, | |
dimension: int = 128, | |
n_filters: int = 32, | |
n_residual_layers: int = 1, | |
ratios: tp.List[int] = [8, 5, 4, 2], | |
activation: str = "ELU", | |
activation_params: dict = {"alpha": 1.0}, | |
norm: str = "weight_norm", | |
norm_params: tp.Dict[str, tp.Any] = {}, | |
kernel_size: int = 7, | |
last_kernel_size: int = 7, | |
residual_kernel_size: int = 3, | |
dilation_base: int = 2, | |
causal: bool = False, | |
pad_mode: str = "reflect", | |
true_skip: bool = False, | |
compress: int = 2, | |
lstm: int = 2, | |
bidirectional: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.dimension = dimension | |
self.n_filters = n_filters | |
self.ratios = list(reversed(ratios)) | |
del ratios | |
self.n_residual_layers = n_residual_layers | |
self.hop_length = np.prod(self.ratios) # 计算乘积 | |
act = getattr(nn, activation) if activation != "Snake" else Snake1d | |
mult = 1 | |
model: tp.List[nn.Module] = [ | |
SConv1d( | |
channels, | |
mult * n_filters, | |
kernel_size, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
) | |
] | |
# Downsample to raw audio scale | |
for i, ratio in enumerate(self.ratios): | |
# Add residual layers | |
for j in range(n_residual_layers): | |
model += [ | |
SEANetResnetBlock( | |
mult * n_filters, | |
kernel_sizes=[residual_kernel_size, 1], | |
dilations=[dilation_base**j, 1], | |
norm=norm, | |
norm_params=norm_params, | |
activation=activation, | |
activation_params=activation_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
compress=compress, | |
true_skip=true_skip, | |
) | |
] | |
# Add downsampling layers | |
model += [ | |
( | |
act(**activation_params) | |
if activation != "Snake" | |
else act(mult * n_filters) | |
), | |
SConv1d( | |
mult * n_filters, | |
mult * n_filters * 2, | |
kernel_size=ratio * 2, | |
stride=ratio, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
), | |
] | |
mult *= 2 | |
if lstm: | |
model += [ | |
SLSTM(mult * n_filters, num_layers=lstm, bidirectional=bidirectional) | |
] | |
mult = mult * 2 if bidirectional else mult | |
model += [ | |
( | |
act(**activation_params) | |
if activation != "Snake" | |
else act(mult * n_filters) | |
), | |
SConv1d( | |
mult * n_filters, | |
dimension, | |
last_kernel_size, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
), | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
return self.model(x) | |
class SEANetDecoder(nn.Module): | |
"""SEANet decoder. | |
Args: | |
channels (int): Audio channels. | |
dimension (int): Intermediate representation dimension. | |
n_filters (int): Base width for the model. | |
n_residual_layers (int): nb of residual layers. | |
ratios (Sequence[int]): kernel size and stride ratios | |
activation (str): Activation function. | |
activation_params (dict): Parameters to provide to the activation function | |
final_activation (str): Final activation function after all convolutions. | |
final_activation_params (dict): Parameters to provide to the activation function | |
norm (str): Normalization method. | |
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
kernel_size (int): Kernel size for the initial convolution. | |
last_kernel_size (int): Kernel size for the initial convolution. | |
residual_kernel_size (int): Kernel size for the residual layers. | |
dilation_base (int): How much to increase the dilation with each layer. | |
causal (bool): Whether to use fully causal convolution. | |
pad_mode (str): Padding mode for the convolutions. | |
true_skip (bool): Whether to use true skip connection or a simple | |
(streamable) convolution as the skip connection in the residual network blocks. | |
compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
lstm (int): Number of LSTM layers at the end of the encoder. | |
trim_right_ratio (float): Ratio for trimming at the right of the transposed convolution under the causal setup. | |
If equal to 1.0, it means that all the trimming is done at the right. | |
""" | |
def __init__( | |
self, | |
channels: int = 1, | |
dimension: int = 128, | |
n_filters: int = 32, | |
n_residual_layers: int = 1, | |
ratios: tp.List[int] = [8, 5, 4, 2], | |
activation: str = "ELU", | |
activation_params: dict = {"alpha": 1.0}, | |
final_activation: tp.Optional[str] = None, | |
final_activation_params: tp.Optional[dict] = None, | |
norm: str = "weight_norm", | |
norm_params: tp.Dict[str, tp.Any] = {}, | |
kernel_size: int = 7, | |
last_kernel_size: int = 7, | |
residual_kernel_size: int = 3, | |
dilation_base: int = 2, | |
causal: bool = False, | |
pad_mode: str = "reflect", | |
true_skip: bool = False, | |
compress: int = 2, | |
lstm: int = 2, | |
trim_right_ratio: float = 1.0, | |
bidirectional: bool = False, | |
): | |
super().__init__() | |
self.dimension = dimension | |
self.channels = channels | |
self.n_filters = n_filters | |
self.ratios = ratios | |
del ratios | |
self.n_residual_layers = n_residual_layers | |
self.hop_length = np.prod(self.ratios) | |
act = getattr(nn, activation) if activation != "Snake" else Snake1d | |
mult = int(2 ** len(self.ratios)) | |
model: tp.List[nn.Module] = [ | |
SConv1d( | |
dimension, | |
mult * n_filters, | |
kernel_size, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
) | |
] | |
if lstm: | |
model += [ | |
SLSTM(mult * n_filters, num_layers=lstm, bidirectional=bidirectional) | |
] | |
# Upsample to raw audio scale | |
for i, ratio in enumerate(self.ratios): | |
# Add upsampling layers | |
model += [ | |
( | |
act(**activation_params) | |
if activation != "Snake" | |
else act(mult * n_filters) | |
), | |
SConvTranspose1d( | |
mult * n_filters, | |
mult * n_filters // 2, | |
kernel_size=ratio * 2, | |
stride=ratio, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
trim_right_ratio=trim_right_ratio, | |
), | |
] | |
# Add residual layers | |
for j in range(n_residual_layers): | |
model += [ | |
SEANetResnetBlock( | |
mult * n_filters // 2, | |
kernel_sizes=[residual_kernel_size, 1], | |
dilations=[dilation_base**j, 1], | |
activation=activation, | |
activation_params=activation_params, | |
norm=norm, | |
norm_params=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
compress=compress, | |
true_skip=true_skip, | |
) | |
] | |
mult //= 2 | |
# Add final layers | |
model += [ | |
act(**activation_params) if activation != "Snake" else act(n_filters), | |
SConv1d( | |
n_filters, | |
channels, | |
last_kernel_size, | |
norm=norm, | |
norm_kwargs=norm_params, | |
causal=causal, | |
pad_mode=pad_mode, | |
), | |
] | |
# Add optional final activation to decoder (eg. tanh) | |
if final_activation is not None: | |
final_act = getattr(nn, final_activation) | |
final_activation_params = final_activation_params or {} | |
model += [final_act(**final_activation_params)] | |
self.model = nn.Sequential(*model) | |
def forward(self, z): | |
y = self.model(z) | |
return y | |
def test(): | |
import torch | |
encoder = SEANetEncoder() | |
decoder = SEANetDecoder() | |
x = torch.randn(1, 1, 24000) | |
z = encoder(x) | |
print("z ", z.shape) | |
assert 1 == 2 | |
assert list(z.shape) == [1, 128, 75], z.shape | |
y = decoder(z) | |
assert y.shape == x.shape, (x.shape, y.shape) | |
if __name__ == "__main__": | |
test() | |