leditsplusplus / app.py
Linoy Tsaban
Update app.py
94a5545
raw
history blame
42.1 kB
import gradio as gr
import torch
import numpy as np
import requests
import random
from io import BytesIO
from utils import *
from constants import *
# from inversion_utils import *
# from inversion_utils_dpmplusplus import *
#from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from pipeline_semantic_stable_diffusion_img2img_solver import SemanticStableDiffusionImg2ImgPipeline_DPMSolver
from torch import autocast, inference_mode
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from scheduling_dpmsolver_multistep_inject import DPMSolverMultistepSchedulerInject
from transformers import AutoProcessor, BlipForConditionalGeneration
from share_btn import community_icon_html, loading_icon_html, share_js
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = SemanticStableDiffusionImg2ImgPipeline_DPMSolver.from_pretrained(sd_model_id,torch_dtype=torch.float16).to(device)
# pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
pipe.scheduler = DPMSolverMultistepSchedulerInject.from_pretrained(sd_model_id, subfolder="scheduler"
, algorithm_type="sde-dpmsolver++", solver_order=2)
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base",torch_dtype=torch.float16).to(device)
## IMAGE CPATIONING ##
def caption_image(input_image):
inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16)
pixel_values = inputs.pixel_values
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption, generated_caption
## DDPM INVERSION AND SAMPLING ##
# def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# # inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# # based on the code in https://github.com/inbarhub/DDPM_inversion
# # returns wt, zs, wts:
# # wt - inverted latent
# # wts - intermediate inverted latents
# # zs - noise maps
# sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# # vae encode image
# with inference_mode():
# w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215)
# # find Zs and wts - forward process
# wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
# return zs, wts
# def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# # reverse process (via Zs and wT)
# w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# # vae decode image
# with inference_mode():
# x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
# if x0_dec.dim()<4:
# x0_dec = x0_dec[None,:,:,:]
# img = image_grid(x0_dec)
# return img
# def reconstruct(tar_prompt,
# image_caption,
# tar_cfg_scale,
# skip,
# wts, zs,
# do_reconstruction,
# reconstruction,
# reconstruct_button
# ):
# if reconstruct_button == "Hide Reconstruction":
# return reconstruction.value, reconstruction, ddpm_edited_image.update(visible=False), do_reconstruction, "Show Reconstruction"
# else:
# if do_reconstruction:
# if image_caption.lower() == tar_prompt.lower(): # if image caption was not changed, run actual reconstruction
# tar_prompt = ""
# reconstruction_img = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
# reconstruction = gr.State(value=reconstruction_img)
# do_reconstruction = False
# return reconstruction.value, reconstruction, ddpm_edited_image.update(visible=True), do_reconstruction, "Hide Reconstruction"
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
latnets = wts.value[-1].expand(1, -1, -1, -1)
img = pipe(prompt=prompt_tar,
init_latents=latnets,
guidance_scale = cfg_scale_tar,
# num_images_per_prompt=1,
# num_inference_steps=steps,
# use_ddpm=True,
# wts=wts.value,
zs=zs.value).images[0]
return img
def reconstruct(tar_prompt,
image_caption,
tar_cfg_scale,
skip,
wts, zs,
do_reconstruction,
reconstruction,
reconstruct_button
):
if reconstruct_button == "Hide Reconstruction":
return reconstruction.value, reconstruction, ddpm_edited_image.update(visible=False), do_reconstruction, "Show Reconstruction"
else:
if do_reconstruction:
if image_caption.lower() == tar_prompt.lower(): # if image caption was not changed, run actual reconstruction
tar_prompt = ""
latnets = wts.value[-1].expand(1, -1, -1, -1)
reconstruction_img = sample(zs, wts, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
reconstruction = gr.State(value=reconstruction_img)
do_reconstruction = False
return reconstruction.value, reconstruction, ddpm_edited_image.update(visible=True), do_reconstruction, "Hide Reconstruction"
def load_and_invert(
input_image,
do_inversion,
seed, randomize_seed,
wts, zs,
src_prompt ="",
# tar_prompt="",
steps=30,
src_cfg_scale = 3.5,
skip=15,
tar_cfg_scale=15,
progress=gr.Progress(track_tqdm=True)
):
# x0 = load_512(input_image, device=device).to(torch.float16)
if do_inversion or randomize_seed:
if randomize_seed:
seed = randomize_seed_fn()
seed_everything(seed)
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = pipe.invert(
image_path = input_image,
source_prompt =src_prompt,
source_guidance_scale= src_cfg_scale,
num_inversion_steps = steps,
skip = skip,
eta = 1.0,
)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
return wts, zs, do_inversion, inversion_progress.update(visible=False)
## SEGA ##
def edit(input_image,
wts, zs,
tar_prompt,
image_caption,
steps,
skip,
tar_cfg_scale,
edit_concept_1,edit_concept_2,edit_concept_3,
guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
warmup_1, warmup_2, warmup_3,
neg_guidance_1, neg_guidance_2, neg_guidance_3,
threshold_1, threshold_2, threshold_3,
do_reconstruction,
reconstruction,
# for inversion in case it needs to be re computed (and avoid delay):
do_inversion,
seed,
randomize_seed,
src_prompt,
src_cfg_scale,
mask_type):
show_share_button = gr.update(visible=True)
if(mask_type == "No mask"):
use_cross_attn_mask = False
use_intersect_mask = False
elif(mask_type=="Cross Attention Mask"):
use_cross_attn_mask = True
use_intersect_mask = False
elif(mask_type=="Intersect Mask"):
use_cross_attn_mask = False
use_intersect_mask = True
if randomize_seed:
seed = randomize_seed_fn()
seed_everything(seed)
if do_inversion or randomize_seed:
zs_tensor, wts_tensor = pipe.invert(
image_path = input_image,
source_prompt =src_prompt,
source_guidance_scale= src_cfg_scale,
num_inversion_steps = steps,
skip = skip,
eta = 1.0,
)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
if image_caption.lower() == tar_prompt.lower(): # if image caption was not changed, run pure sega
tar_prompt = ""
if edit_concept_1 != "" or edit_concept_2 != "" or edit_concept_3 != "":
editing_args = dict(
editing_prompt = [edit_concept_1,edit_concept_2,edit_concept_3],
reverse_editing_direction = [ neg_guidance_1, neg_guidance_2, neg_guidance_3,],
edit_warmup_steps=[warmup_1, warmup_2, warmup_3,],
edit_guidance_scale=[guidnace_scale_1,guidnace_scale_2,guidnace_scale_3],
edit_threshold=[threshold_1, threshold_2, threshold_3],
edit_momentum_scale=0.3,
edit_mom_beta=0.6,
eta=1,
use_cross_attn_mask=use_cross_attn_mask,
use_intersect_mask=use_intersect_mask
)
latnets = wts.value[-1].expand(1, -1, -1, -1)
sega_out = pipe(prompt=tar_prompt,
init_latents=latnets,
guidance_scale = tar_cfg_scale,
# num_images_per_prompt=1,
# num_inference_steps=steps,
# use_ddpm=True,
# wts=wts.value,
zs=zs.value, **editing_args)
return sega_out.images[0], reconstruct_button.update(visible=True), do_reconstruction, reconstruction, wts, zs, do_inversion, show_share_button
else: # if sega concepts were not added, performs regular ddpm sampling
if do_reconstruction: # if ddpm sampling wasn't computed
pure_ddpm_img = sample(zs, wts, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
reconstruction = gr.State(value=pure_ddpm_img)
do_reconstruction = False
return pure_ddpm_img, reconstruct_button.update(visible=False), do_reconstruction, reconstruction, wts, zs, do_inversion, show_share_button
return reconstruction.value, reconstruct_button.update(visible=False), do_reconstruction, reconstruction, wts, zs, do_inversion, show_share_button
def randomize_seed_fn():
seed = random.randint(0, np.iinfo(np.int32).max)
return seed
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def crop_image(image):
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((512, 512)))
return image
def get_example():
case = [
[
'examples/lemons_input.jpg',
# '',
'apples', 'lemons',
'a ceramic bowl',
'examples/lemons_output.jpg',
7,7,
1,1,
False, True,
50,
25,
5,
0.95, 0.95
],
[
'examples/girl_with_pearl_earring_input.png',
# '',
'glasses', '',
'',
'examples/girl_with_pearl_earring_output.png',
3,7,
3,2,
False,False,
50,
25,
5,
0.97, 0.95
],
[
'examples/flower_field_input.jpg',
# '',
'pink tulips', 'red flowers',
'van gogh painting',
'examples/flower_field_output_2.jpg',
20,7,
1,1,
False,True,
50,
25,
7,
0.9, 0.9
],
]
return case
def swap_visibilities(input_image,
edit_concept_1,
edit_concept_2,
tar_prompt,
sega_edited_image,
guidnace_scale_1,
guidnace_scale_2,
warmup_1,
warmup_2,
neg_guidance_1,
neg_guidance_2,
steps,
skip,
tar_cfg_scale,
threshold_1,
threshold_2,
sega_concepts_counter
):
sega_concepts_counter=0
concept1_update = update_display_concept("Remove" if neg_guidance_1 else "Add", edit_concept_1, neg_guidance_1, sega_concepts_counter)
if(edit_concept_2 != ""):
concept2_update = update_display_concept("Remove" if neg_guidance_2 else "Add", edit_concept_2, neg_guidance_2, sega_concepts_counter+1)
else:
concept2_update = gr.update(visible=False), gr.update(visible=False),gr.update(visible=False), gr.update(value=neg_guidance_2),gr.update(visible=True),gr.update(visible=False),sega_concepts_counter+1
return (gr.update(visible=True), *concept1_update[:-1], *concept2_update)
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
LEDITS++: Limitless Image Editing using Text-to-Image Models
</h1>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://huggingface.co/spaces/leditsplusplus/demo?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css="style.css") as demo:
def update_counter(sega_concepts_counter, concept1, concept2, concept3):
if sega_concepts_counter == "":
sega_concepts_counter = sum(1 for concept in (concept1, concept2, concept3) if concept != '')
return sega_concepts_counter
def remove_concept(sega_concepts_counter, row_triggered):
sega_concepts_counter -= 1
rows_visibility = [gr.update(visible=False) for _ in range(4)]
if(row_triggered-1 > sega_concepts_counter):
rows_visibility[sega_concepts_counter] = gr.update(visible=True)
else:
rows_visibility[row_triggered-1] = gr.update(visible=True)
row1_visibility, row2_visibility, row3_visibility, row4_visibility = rows_visibility
guidance_scale_label = "Concept Guidance Scale"
# enable_interactive = gr.update(interactive=True)
return (gr.update(visible=False),
gr.update(visible=False, value="",),
gr.update(interactive=True, value=""),
gr.update(visible=False,label = guidance_scale_label),
gr.update(interactive=True, value =False),
gr.update(value=DEFAULT_WARMUP_STEPS),
gr.update(value=DEFAULT_THRESHOLD),
gr.update(visible=True),
gr.update(interactive=True, value="custom"),
row1_visibility,
row2_visibility,
row3_visibility,
row4_visibility,
sega_concepts_counter
)
def update_display_concept(button_label, edit_concept, neg_guidance, sega_concepts_counter):
sega_concepts_counter += 1
guidance_scale_label = "Concept Guidance Scale"
if(button_label=='Remove'):
neg_guidance = True
guidance_scale_label = "Negative Guidance Scale"
return (gr.update(visible=True), #boxn
gr.update(visible=True, value=edit_concept), #concept_n
gr.update(visible=True,label = guidance_scale_label), #guidance_scale_n
gr.update(value=neg_guidance),#neg_guidance_n
gr.update(visible=False), #row_n
gr.update(visible=True), #row_n+1
sega_concepts_counter
)
def display_editing_options(run_button, clear_button, sega_tab):
return run_button.update(visible=True), clear_button.update(visible=True), sega_tab.update(visible=True)
def update_interactive_mode(add_button_label):
if add_button_label == "Clear":
return gr.update(interactive=False), gr.update(interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
def update_dropdown_parms(dropdown):
if dropdown == 'custom':
return DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,DEFAULT_WARMUP_STEPS, DEFAULT_THRESHOLD
elif dropdown =='style':
return STYLE_SEGA_CONCEPT_GUIDANCE_SCALE,STYLE_WARMUP_STEPS, STYLE_THRESHOLD
elif dropdown =='object':
return OBJECT_SEGA_CONCEPT_GUIDANCE_SCALE,OBJECT_WARMUP_STEPS, OBJECT_THRESHOLD
elif dropdown =='faces':
return FACE_SEGA_CONCEPT_GUIDANCE_SCALE,FACE_WARMUP_STEPS, FACE_THRESHOLD
def reset_do_inversion():
return True
def reset_do_reconstruction():
do_reconstruction = True
return do_reconstruction
def reset_image_caption():
return ""
def update_inversion_progress_visibility(input_image, do_inversion):
if do_inversion and not input_image is None:
return inversion_progress.update(visible=True)
else:
return inversion_progress.update(visible=False)
def update_edit_progress_visibility(input_image, do_inversion):
# if do_inversion and not input_image is None:
# return inversion_progress.update(visible=True)
# else:
return inversion_progress.update(visible=True)
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
reconstruction = gr.State()
do_inversion = gr.State(value=True)
do_reconstruction = gr.State(value=True)
sega_concepts_counter = gr.State(0)
image_caption = gr.State(value="")
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True, elem_id="input_image")
ddpm_edited_image = gr.Image(label=f"Pure DDPM Inversion Image", interactive=False, visible=False)
sega_edited_image = gr.Image(label=f"LEDITS Edited Image", interactive=False, elem_id="output_image")
input_image.style(height=365, width=365)
ddpm_edited_image.style(height=365, width=365)
sega_edited_image.style(height=365, width=365)
with gr.Group(visible=False) as share_btn_container:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=True)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
with gr.Box(visible=False, elem_id="box1") as box1:
with gr.Row():
concept_1 = gr.Button(scale=3, value="")
remove_concept1 = gr.Button("x", scale=1, min_width=10)
with gr.Row():
guidnace_scale_1 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=30,
info="How strongly the concept should modify the image",
value=DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,
step=0.5, interactive=True)
with gr.Box(visible=False, elem_id="box2") as box2:
with gr.Row():
concept_2 = gr.Button(scale=3, value="")
remove_concept2 = gr.Button("x", scale=1, min_width=10)
with gr.Row():
guidnace_scale_2 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=30,
info="How strongly the concept should modify the image",
value=DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,
step=0.5, interactive=True)
with gr.Box(visible=False, elem_id="box3") as box3:
with gr.Row():
concept_3 = gr.Button(scale=3, value="")
remove_concept3 = gr.Button("x", scale=1, min_width=10)
with gr.Row():
guidnace_scale_3 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=30,
info="How strongly the concept should modify the image",
value=DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,
step=0.5, interactive=True)
with gr.Row():
inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
with gr.Box():
intro_segs = gr.Markdown("Add/Remove Concepts from your Image <span style=\"font-size: 12px; color: rgb(156, 163, 175)\">with Semantic Guidance</span>")
# 1st SEGA concept
with gr.Row().style(mobile_collapse=False) as row1:
with gr.Column(scale=3, min_width=100):
with gr.Row().style(mobile_collapse=True):
# with gr.Column(scale=3, min_width=100):
edit_concept_1 = gr.Textbox(
label="Concept",
show_label=True,
max_lines=1, value="",
placeholder="E.g.: Sunglasses",
)
# with gr.Column(scale=2, min_width=100):# better mobile ui
dropdown1 = gr.Dropdown(label = "Edit Type", value ='custom' , choices=['custom','style', 'object', 'faces'])
with gr.Column(scale=1, min_width=100, visible=False):
neg_guidance_1 = gr.Checkbox(
label='Remove Concept?')
with gr.Column(scale=1, min_width=100):
with gr.Row().style(mobile_collapse=False): # better mobile ui
with gr.Column():
add_1 = gr.Button('Add')
remove_1 = gr.Button('Remove')
# 2nd SEGA concept
with gr.Row(visible=False).style(equal_height=True) as row2:
with gr.Column(scale=3, min_width=100):
with gr.Row().style(mobile_collapse=True): #better mobile UI
# with gr.Column(scale=3, min_width=100):
edit_concept_2 = gr.Textbox(
label="Concept",
show_label=True,
max_lines=1,
placeholder="E.g.: Realistic",
)
# with gr.Column(scale=2, min_width=100):# better mobile ui
dropdown2 = gr.Dropdown(label = "Edit Type", value ='custom' , choices=['custom','style', 'object', 'faces'])
with gr.Column(scale=1, min_width=100, visible=False):
neg_guidance_2 = gr.Checkbox(
label='Remove Concept?')
with gr.Column(scale=1, min_width=100):
with gr.Row().style(mobile_collapse=False): # better mobile ui
with gr.Column():
add_2 = gr.Button('Add')
remove_2 = gr.Button('Remove')
# 3rd SEGA concept
with gr.Row(visible=False).style(equal_height=True) as row3:
with gr.Column(scale=3, min_width=100):
with gr.Row().style(mobile_collapse=True): #better mobile UI
# with gr.Column(scale=3, min_width=100):
edit_concept_3 = gr.Textbox(
label="Concept",
show_label=True,
max_lines=1,
placeholder="E.g.: orange",
)
# with gr.Column(scale=2, min_width=100):
dropdown3 = gr.Dropdown(label = "Edit Type", value ='custom' , choices=['custom','style', 'object', 'faces'])
with gr.Column(scale=1, min_width=100, visible=False):
neg_guidance_3 = gr.Checkbox(
label='Remove Concept?',visible=True)
with gr.Column(scale=1, min_width=100):
with gr.Row().style(mobile_collapse=False): # better mobile ui
with gr.Column():
add_3 = gr.Button('Add')
remove_3 = gr.Button('Remove')
with gr.Row(visible=False).style(equal_height=True) as row4:
gr.Markdown("### Max of 3 concepts reached. Remove a concept to add more")
#with gr.Row(visible=False).style(mobile_collapse=False, equal_height=True):
# add_concept_button = gr.Button("+1 concept")
with gr.Row().style(mobile_collapse=False, equal_height=True):
tar_prompt = gr.Textbox(
label="Describe your edited image (optional)",
elem_id="target_prompt",
# show_label=False,
max_lines=1, value="", scale=3,
placeholder="Target prompt, DDPM Inversion", info = "DDPM Inversion Prompt. Can help with global changes, modify to what you would like to see"
)
# caption_button = gr.Button("Caption Image", scale=1)
with gr.Row():
run_button = gr.Button("Edit your image!", visible=True)
with gr.Accordion("Advanced Options", open=False):
with gr.Tabs() as tabs:
with gr.TabItem('General options', id=2):
with gr.Row():
with gr.Column(min_width=100):
clear_button = gr.Button("Clear", visible=True)
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
steps = gr.Number(value=50, precision=0, label="Num Diffusion Steps", interactive=True)
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
mask_type = gr.Radio(choices=["No mask", "Cross Attention Mask", "Intersect Mask"], value="Intersect Mask", label="Mask type")
with gr.Column(min_width=100):
reconstruct_button = gr.Button("Show Reconstruction", visible=False)
skip = gr.Slider(minimum=0, maximum=95, value=25, step=1, label="Skip Steps", interactive=True, info = "Percentage of skipped denoising steps. Bigger values increase fidelity to input image")
tar_cfg_scale = gr.Slider(minimum=1, maximum=30,value=7.5, label=f"Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
with gr.TabItem('SEGA options', id=3) as sega_advanced_tab:
# 1st SEGA concept
gr.Markdown("1st concept")
with gr.Row().style(mobile_collapse=False, equal_height=True):
warmup_1 = gr.Slider(label='Warmup', minimum=0, maximum=50,
value=DEFAULT_WARMUP_STEPS,
step=1, interactive=True, info="At which step to start applying semantic guidance. Bigger values reduce edit concept's effect")
threshold_1 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99,
value=DEFAULT_THRESHOLD, step=0.01, interactive=True,
info = "Lower the threshold for more effect (e.g. ~0.9 for style transfer)")
# 2nd SEGA concept
gr.Markdown("2nd concept")
with gr.Row() as row2_advanced:
warmup_2 = gr.Slider(label='Warmup', minimum=0, maximum=50,
value=DEFAULT_WARMUP_STEPS,
step=1, interactive=True, info="At which step to start applying semantic guidance. Bigger values reduce edit concept's effect")
threshold_2 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99,
value=DEFAULT_THRESHOLD,
step=0.01, interactive=True,
info = "Lower the threshold for more effect (e.g. ~0.9 for style transfer)")
# 3rd SEGA concept
gr.Markdown("3rd concept")
with gr.Row() as row3_advanced:
warmup_3 = gr.Slider(label='Warmup', minimum=0, maximum=50,
value=DEFAULT_WARMUP_STEPS, step=1,
interactive=True, info="At which step to start applying semantic guidance. Bigger values reduce edit concept's effect")
threshold_3 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99,
value=DEFAULT_THRESHOLD, step=0.01,
interactive=True,
info = "Lower the threshold for more effect (e.g. ~0.9 for style transfer)")
# caption_button.click(
# fn = caption_image,
# inputs = [input_image],
# outputs = [tar_prompt]
# )
#neg_guidance_1.change(fn = update_label, inputs=[neg_guidance_1], outputs=[add_1])
#neg_guidance_2.change(fn = update_label, inputs=[neg_guidance_2], outputs=[add_2])
#neg_guidance_3.change(fn = update_label, inputs=[neg_guidance_3], outputs=[add_3])
add_1.click(fn=update_counter,
inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3],
outputs=sega_concepts_counter,queue=False).then(fn = update_display_concept, inputs=[add_1, edit_concept_1, neg_guidance_1, sega_concepts_counter], outputs=[box1, concept_1, guidnace_scale_1,neg_guidance_1,row1, row2, sega_concepts_counter],queue=False)
add_2.click(fn=update_counter,inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3], outputs=sega_concepts_counter,queue=False).then(fn = update_display_concept, inputs=[add_2, edit_concept_2, neg_guidance_2, sega_concepts_counter], outputs=[box2, concept_2, guidnace_scale_2,neg_guidance_2,row2, row3, sega_concepts_counter],queue=False)
add_3.click(fn=update_counter,inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3], outputs=sega_concepts_counter,queue=False).then(fn = update_display_concept, inputs=[add_3, edit_concept_3, neg_guidance_3, sega_concepts_counter], outputs=[box3, concept_3, guidnace_scale_3,neg_guidance_3,row3, row4, sega_concepts_counter],queue=False)
remove_1.click(fn = update_display_concept, inputs=[remove_1, edit_concept_1, neg_guidance_1, sega_concepts_counter], outputs=[box1, concept_1, guidnace_scale_1,neg_guidance_1,row1, row2, sega_concepts_counter],queue=False)
remove_2.click(fn = update_display_concept, inputs=[remove_2, edit_concept_2, neg_guidance_2 ,sega_concepts_counter], outputs=[box2, concept_2, guidnace_scale_2,neg_guidance_2,row2, row3,sega_concepts_counter],queue=False)
remove_3.click(fn = update_display_concept, inputs=[remove_3, edit_concept_3, neg_guidance_3, sega_concepts_counter], outputs=[box3, concept_3, guidnace_scale_3,neg_guidance_3, row3, row4, sega_concepts_counter],queue=False)
remove_concept1.click(
fn=update_counter,inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3], outputs=sega_concepts_counter,queue=False).then(
fn = remove_concept, inputs=[sega_concepts_counter,gr.State(1)], outputs= [box1, concept_1, edit_concept_1, guidnace_scale_1,neg_guidance_1,warmup_1, threshold_1, add_1, dropdown1, row1, row2, row3, row4, sega_concepts_counter],queue=False)
remove_concept2.click(
fn=update_counter,inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3], outputs=sega_concepts_counter,queue=False).then(
fn = remove_concept, inputs=[sega_concepts_counter,gr.State(2)], outputs=[box2, concept_2, edit_concept_2, guidnace_scale_2,neg_guidance_2, warmup_2, threshold_2, add_2 , dropdown2, row1, row2, row3, row4, sega_concepts_counter],queue=False)
remove_concept3.click(
fn=update_counter,inputs=[sega_concepts_counter,edit_concept_1,edit_concept_2,edit_concept_3], outputs=sega_concepts_counter,queue=False).then(
fn = remove_concept,inputs=[sega_concepts_counter,gr.State(3)], outputs=[box3, concept_3, edit_concept_3, guidnace_scale_3,neg_guidance_3,warmup_3, threshold_3, add_3, dropdown3, row1, row2, row3, row4, sega_concepts_counter],queue=False)
#add_concept_button.click(fn = update_display_concept, inputs=sega_concepts_counter,
# outputs= [row2, row2_advanced, row3, row3_advanced, add_concept_button, sega_concepts_counter], queue = False)
run_button.click(
fn=edit,
inputs=[input_image,
wts, zs,
tar_prompt,
image_caption,
steps,
skip,
tar_cfg_scale,
edit_concept_1,edit_concept_2,edit_concept_3,
guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
warmup_1, warmup_2, warmup_3,
neg_guidance_1, neg_guidance_2, neg_guidance_3,
threshold_1, threshold_2, threshold_3, do_reconstruction, reconstruction,
do_inversion,
seed,
randomize_seed,
src_prompt,
src_cfg_scale,
mask_type
],
outputs=[sega_edited_image, reconstruct_button, do_reconstruction, reconstruction, wts, zs, do_inversion, share_btn_container])
# .success(fn=update_gallery_display, inputs= [prev_output_image, sega_edited_image], outputs = [gallery, gallery, prev_output_image])
input_image.change(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False).then(
fn = randomize_seed_fn,
# inputs = [seed, randomize_seed],
outputs = [seed], queue = False)
# Automatically start inverting upon input_image change
input_image.upload(fn = crop_image, inputs = [input_image], outputs = [input_image],queue=False).then(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False).then(
fn = randomize_seed_fn,
# inputs = [seed, randomize_seed],
outputs = [seed], queue = False).then(fn = caption_image,
inputs = [input_image],
outputs = [tar_prompt, image_caption]).then(fn = update_inversion_progress_visibility, inputs =[input_image,do_inversion],
outputs=[inversion_progress],queue=False).then(
fn=load_and_invert,
inputs=[input_image,
do_inversion,
seed, randomize_seed,
wts, zs,
src_prompt,
# tar_prompt,
steps,
src_cfg_scale,
skip,
tar_cfg_scale,
],
# outputs=[ddpm_edited_image, wts, zs, do_inversion],
outputs=[wts, zs, do_inversion, inversion_progress],
).then(fn = update_inversion_progress_visibility, inputs =[input_image,do_inversion],
outputs=[inversion_progress],queue=False).then(
lambda: reconstruct_button.update(visible=False),
outputs=[reconstruct_button]).then(
fn = reset_do_reconstruction,
outputs = [do_reconstruction],
queue = False)
# Repeat inversion (and reconstruction) when these params are changed:
src_prompt.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False).then(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
steps.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False).then(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
src_cfg_scale.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False).then(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
# Repeat only reconstruction these params are changed:
tar_prompt.change(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
tar_cfg_scale.change(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
skip.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False).then(
fn = reset_do_reconstruction,
outputs = [do_reconstruction], queue = False)
dropdown1.change(fn=update_dropdown_parms, inputs = [dropdown1], outputs = [guidnace_scale_1,warmup_1, threshold_1], queue=False)
dropdown2.change(fn=update_dropdown_parms, inputs = [dropdown2], outputs = [guidnace_scale_2,warmup_2, threshold_2], queue=False)
dropdown3.change(fn=update_dropdown_parms, inputs = [dropdown3], outputs = [guidnace_scale_3,warmup_3, threshold_3], queue=False)
clear_components = [input_image,ddpm_edited_image,ddpm_edited_image,sega_edited_image, do_inversion,
src_prompt, steps, src_cfg_scale, seed,
tar_prompt, skip, tar_cfg_scale, reconstruct_button,reconstruct_button,
edit_concept_1, guidnace_scale_1,guidnace_scale_1,warmup_1, threshold_1, neg_guidance_1,dropdown1, concept_1, concept_1, row1,
edit_concept_2, guidnace_scale_2,guidnace_scale_2,warmup_2, threshold_2, neg_guidance_2,dropdown2, concept_2, concept_2, row2,
edit_concept_3, guidnace_scale_3,guidnace_scale_3,warmup_3, threshold_3, neg_guidance_3,dropdown3, concept_3,concept_3, row3,
row4,sega_concepts_counter, box1, box2, box3 ]
clear_components_output_vals = [None, None,ddpm_edited_image.update(visible=False), None, True,
"", DEFAULT_DIFFUSION_STEPS, DEFAULT_SOURCE_GUIDANCE_SCALE, DEFAULT_SEED,
"", DEFAULT_SKIP_STEPS, DEFAULT_TARGET_GUIDANCE_SCALE, reconstruct_button.update(value="Show Reconstruction"),reconstruct_button.update(visible=False),
"", DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,guidnace_scale_1.update(visible=False), DEFAULT_WARMUP_STEPS, DEFAULT_THRESHOLD, DEFAULT_NEGATIVE_GUIDANCE, "custom","", concept_1.update(visible=False), row1.update(visible=True),
"", DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,guidnace_scale_2.update(visible=False), DEFAULT_WARMUP_STEPS, DEFAULT_THRESHOLD, DEFAULT_NEGATIVE_GUIDANCE, "custom","", concept_2.update(visible=False), row2.update(visible=False),
"", DEFAULT_SEGA_CONCEPT_GUIDANCE_SCALE,guidnace_scale_3.update(visible=False), DEFAULT_WARMUP_STEPS, DEFAULT_THRESHOLD, DEFAULT_NEGATIVE_GUIDANCE, "custom","",concept_3.update(visible=False), row3.update(visible=False), row4.update(visible=False), gr.update(value=0),
box1.update(visible=False), box2.update(visible=False), box3.update(visible=False)]
clear_button.click(lambda: clear_components_output_vals, outputs =clear_components)
reconstruct_button.click(lambda: ddpm_edited_image.update(visible=True), outputs=[ddpm_edited_image]).then(fn = reconstruct,
inputs = [tar_prompt,
image_caption,
tar_cfg_scale,
skip,
wts, zs,
do_reconstruction,
reconstruction,
reconstruct_button],
outputs = [ddpm_edited_image,reconstruction, ddpm_edited_image, do_reconstruction, reconstruct_button])
randomize_seed.change(
fn = randomize_seed_fn,
# inputs = [seed, randomize_seed],
outputs = [seed],
queue = False)
share_button.click(None, [], [], _js=share_js)
gr.Examples(
label='Examples',
fn=swap_visibilities,
run_on_click=True,
examples=get_example(),
inputs=[input_image,
edit_concept_1,
edit_concept_2,
tar_prompt,
sega_edited_image,
guidnace_scale_1,
guidnace_scale_2,
warmup_1,
warmup_2,
neg_guidance_1,
neg_guidance_2,
steps,
skip,
tar_cfg_scale,
threshold_1,
threshold_2,
sega_concepts_counter
],
outputs=[share_btn_container, box1, concept_1, guidnace_scale_1,neg_guidance_1, row1, row2,box2, concept_2, guidnace_scale_2,neg_guidance_2,row2, row3,sega_concepts_counter],
cache_examples=True
)
demo.queue()
demo.launch()
# demo.launch(share=True)