Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
torch.jit.script = lambda f: f | |
import timm | |
import time | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard | |
from safetensors.torch import load_file | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler | |
import lora | |
import copy | |
import json | |
import gc | |
import random | |
from urllib.parse import quote | |
import gdown | |
import os | |
import re | |
import requests | |
import diffusers | |
from diffusers.utils import load_image | |
from diffusers.models import ControlNetModel | |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from insightface.app import FaceAnalysis | |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps | |
from controlnet_aux import ZoeDetector | |
from compel import Compel, ReturnedEmbeddingsType | |
#import spaces | |
#from gradio_imageslider import ImageSlider | |
with open("sdxl_loras.json", "r") as file: | |
data = json.load(file) | |
sdxl_loras_raw = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item["trigger_word"], | |
"weights": item["weights"], | |
"is_compatible": item["is_compatible"], | |
"is_pivotal": item.get("is_pivotal", False), | |
"text_embedding_weights": item.get("text_embedding_weights", None), | |
"likes": item.get("likes", 0), | |
"downloads": item.get("downloads", 0), | |
"is_nc": item.get("is_nc", False), | |
"new": item.get("new", False), | |
} | |
for item in data | |
] | |
with open("defaults_data.json", "r") as file: | |
lora_defaults = json.load(file) | |
#device = "cuda" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
dtype = torch.float16 | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
dtype = torch.float32 | |
else: | |
device = "cpu" | |
dtype = torch.float32 | |
state_dicts = {} | |
for item in sdxl_loras_raw: | |
saved_name = hf_hub_download(item["repo"], item["weights"]) | |
if not saved_name.endswith('.safetensors'): | |
state_dict = torch.load(saved_name) | |
else: | |
state_dict = load_file(saved_name) | |
state_dicts[item["repo"]] = { | |
"saved_name": saved_name, | |
"state_dict": state_dict | |
} | |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] | |
# download models | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/config.json", | |
local_dir="data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
local_dir="data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="data/checkpoints" | |
) | |
hf_hub_download( | |
repo_id="latent-consistency/lcm-lora-sdxl", | |
filename="pytorch_lora_weights.safetensors", | |
local_dir="data/checkpoints", | |
) | |
## download antelopev2 | |
#if not os.path.exists("data/antelopev2.zip"): | |
# gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="data/", quiet=False, fuzzy=True) | |
# os.system("unzip /data/antelopev2.zip -d /data/models/") | |
app = FaceAnalysis(name='antelopev2', root='data', providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
# prepare models under ./checkpoints | |
face_adapter = f'data/checkpoints/ip-adapter.bin' | |
controlnet_path = f'data/checkpoints/ControlNetModel' | |
# load IdentityNet | |
st = time.time() | |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype) | |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=dtype) | |
et = time.time() | |
elapsed_time = et - st | |
print('Loading ControlNet took: ', elapsed_time, 'seconds') | |
st = time.time() | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) | |
et = time.time() | |
elapsed_time = et - st | |
print('Loading VAE took: ', elapsed_time, 'seconds') | |
st = time.time() | |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", | |
vae=vae, | |
controlnet=[identitynet, zoedepthnet], | |
torch_dtype=dtype) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) | |
pipe.load_ip_adapter_instantid(face_adapter) | |
pipe.set_ip_adapter_scale(0.8) | |
et = time.time() | |
elapsed_time = et - st | |
print('Loading pipeline took: ', elapsed_time, 'seconds') | |
st = time.time() | |
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) | |
et = time.time() | |
elapsed_time = et - st | |
print('Loading Compel took: ', elapsed_time, 'seconds') | |
st = time.time() | |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") | |
et = time.time() | |
elapsed_time = et - st | |
print('Loading Zoe took: ', elapsed_time, 'seconds') | |
zoe.to(device) | |
pipe.to(device) | |
last_lora = "" | |
last_fused = False | |
js = ''' | |
var button = document.getElementById('button'); | |
// Add a click event listener to the button | |
button.addEventListener('click', function() { | |
element.classList.add('selected'); | |
}); | |
''' | |
#lora_archive = "/data" | |
lora_archive = "data" | |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False): | |
lora_repo = sdxl_loras[selected_state.index]["repo"] | |
new_placeholder = "Type a prompt to use your selected LoRA" | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" | |
for lora_list in lora_defaults: | |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: | |
face_strength = lora_list.get("face_strength", 0.85) | |
image_strength = lora_list.get("image_strength", 0.15) | |
weight = lora_list.get("weight", 0.9) | |
depth_control_scale = lora_list.get("depth_control_scale", 0.8) | |
negative = lora_list.get("negative", "") | |
if(is_new): | |
if(selected_state.index == 0): | |
selected_state.index = -9999 | |
else: | |
selected_state.index *= -1 | |
return ( | |
updated_text, | |
gr.update(placeholder=new_placeholder), | |
face_strength, | |
image_strength, | |
weight, | |
depth_control_scale, | |
negative, | |
selected_state | |
) | |
def center_crop_image_as_square(img): | |
square_size = min(img.size) | |
left = (img.width - square_size) / 2 | |
top = (img.height - square_size) / 2 | |
right = (img.width + square_size) / 2 | |
bottom = (img.height + square_size) / 2 | |
img_cropped = img.crop((left, top, right, bottom)) | |
return img_cropped | |
def check_selected(selected_state, custom_lora): | |
if not selected_state and not custom_lora: | |
raise gr.Error("You must select a style") | |
def merge_incompatible_lora(full_path_lora, lora_scale): | |
for weights_file in [full_path_lora]: | |
if ";" in weights_file: | |
weights_file, multiplier = weights_file.split(";") | |
multiplier = float(multiplier) | |
else: | |
multiplier = lora_scale | |
lora_model, weights_sd = lora.create_network_from_weights( | |
multiplier, | |
full_path_lora, | |
pipe.vae, | |
pipe.text_encoder, | |
pipe.unet, | |
for_inference=True, | |
) | |
lora_model.merge_to( | |
pipe.text_encoder, pipe.unet, weights_sd, dtype, device | |
) | |
del weights_sd | |
del lora_model | |
#@spaces.GPU | |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st): | |
print(loaded_state_dict) | |
et = time.time() | |
elapsed_time = et - st | |
print('Getting into the decorated function took: ', elapsed_time, 'seconds') | |
global last_fused, last_lora | |
print("Last LoRA: ", last_lora) | |
print("Current LoRA: ", repo_name) | |
print("Last fused: ", last_fused) | |
#prepare face zoe | |
st = time.time() | |
with torch.no_grad(): | |
image_zoe = zoe(face_image) | |
width, height = face_kps.size | |
images = [face_kps, image_zoe.resize((height, width))] | |
et = time.time() | |
elapsed_time = et - st | |
print('Zoe Depth calculations took: ', elapsed_time, 'seconds') | |
if last_lora != repo_name: | |
if(last_fused): | |
st = time.time() | |
pipe.unfuse_lora() | |
pipe.unload_lora_weights() | |
et = time.time() | |
elapsed_time = et - st | |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds') | |
st = time.time() | |
pipe.load_lora_weights(loaded_state_dict) | |
pipe.fuse_lora(lora_scale) | |
et = time.time() | |
elapsed_time = et - st | |
print('Fuse and load LoRA took: ', elapsed_time, 'seconds') | |
last_fused = True | |
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"] | |
if(is_pivotal): | |
#Add the textual inversion embeddings from pivotal tuning models | |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"] | |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") | |
state_dict_embedding = load_file(embedding_path) | |
try: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
except: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
print("Processing prompt...") | |
st = time.time() | |
conditioning, pooled = compel(prompt) | |
if(negative): | |
negative_conditioning, negative_pooled = compel(negative) | |
else: | |
negative_conditioning, negative_pooled = None, None | |
et = time.time() | |
elapsed_time = et - st | |
print('Prompt processing took: ', elapsed_time, 'seconds') | |
print("Processing image...") | |
st = time.time() | |
image = pipe( | |
prompt_embeds=conditioning, | |
pooled_prompt_embeds=pooled, | |
negative_prompt_embeds=negative_conditioning, | |
negative_pooled_prompt_embeds=negative_pooled, | |
width=1024, | |
height=1024, | |
image_embeds=face_emb, | |
image=face_image, | |
strength=1-image_strength, | |
control_image=images, | |
num_inference_steps=20, | |
guidance_scale = guidance_scale, | |
controlnet_conditioning_scale=[face_strength, depth_control_scale], | |
).images[0] | |
et = time.time() | |
elapsed_time = et - st | |
print('Image processing took: ', elapsed_time, 'seconds') | |
last_lora = repo_name | |
return image | |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)): | |
print("Custom LoRA: ", custom_lora) | |
custom_lora_path = custom_lora[0] if custom_lora else None | |
selected_state_index = selected_state.index if selected_state else -1 | |
st = time.time() | |
face_image = center_crop_image_as_square(face_image) | |
try: | |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
face_emb = face_info['embedding'] | |
face_kps = draw_kps(face_image, face_info['kps']) | |
except: | |
raise gr.Error("No face found in your image. Only face images work here. Try again") | |
et = time.time() | |
elapsed_time = et - st | |
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds') | |
st = time.time() | |
if(custom_lora_path): | |
prompt = f"{prompt} {custom_lora[1]}" | |
else: | |
for lora_list in lora_defaults: | |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]: | |
prompt_full = lora_list.get("prompt", None) | |
if(prompt_full): | |
prompt = prompt_full.replace("<subject>", prompt) | |
print("Prompt:", prompt) | |
if(prompt == ""): | |
prompt = "a person" | |
#print("Selected State: ", selected_state_index) | |
#print(sdxl_loras[selected_state_index]["repo"]) | |
if negative == "": | |
negative = None | |
print("Custom Loaded LoRA: ", custom_lora_path) | |
if not selected_state and not custom_lora_path: | |
raise gr.Error("You must select a style") | |
elif custom_lora_path: | |
repo_name = custom_lora_path | |
full_path_lora = custom_lora_path | |
else: | |
repo_name = sdxl_loras[selected_state_index]["repo"] | |
weight_name = sdxl_loras[selected_state_index]["weights"] | |
full_path_lora = state_dicts[repo_name]["saved_name"] | |
print("Full path LoRA ", full_path_lora) | |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"]) | |
cross_attention_kwargs = None | |
et = time.time() | |
elapsed_time = et - st | |
print('Small content processing took: ', elapsed_time, 'seconds') | |
st = time.time() | |
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, st) | |
return image, gr.update(visible=True) | |
def shuffle_gallery(sdxl_loras): | |
random.shuffle(sdxl_loras) | |
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras | |
def classify_gallery(sdxl_loras): | |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True) | |
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
def swap_gallery(order, sdxl_loras): | |
if(order == "random"): | |
return shuffle_gallery(sdxl_loras) | |
else: | |
return classify_gallery(sdxl_loras) | |
def deselect(): | |
return gr.Gallery(selected_index=None) | |
def get_huggingface_safetensors(link): | |
split_link = link.split("/") | |
if(len(split_link) == 2): | |
model_card = ModelCard.load(link) | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
fs = HfFileSystem() | |
try: | |
list_of_files = fs.ls(link, detail=False) | |
for file in list_of_files: | |
if(file.endswith(".safetensors")): | |
safetensors_name = file.replace("/", "_") | |
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): | |
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}") | |
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))): | |
image_elements = file.split("/") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
except: | |
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url | |
def get_civitai_safetensors(link): | |
link_split = link.split("civitai.com/") | |
pattern = re.compile(r'models\/(\d+)') | |
regex_match = pattern.search(link_split[1]) | |
if(regex_match): | |
civitai_model_id = regex_match.group(1) | |
else: | |
gr.Warning("No CivitAI model id found in your URL") | |
raise Exception("No CivitAI model id found in your URL") | |
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}" | |
x = requests.get(model_request_url) | |
if(x.status_code != 200): | |
raise Exception("Invalid CivitAI URL") | |
model_data = x.json() | |
# if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 2): | |
# gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") | |
# raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.") | |
# elif(model_data["type"] != "LORA"): | |
if(model_data["type"] != "LORA"): | |
gr.Warning("The model isn't tagged at CivitAI as a LoRA") | |
raise Exception("The model isn't tagged at CivitAI as a LoRA") | |
model_link_download = None | |
image_url = None | |
trigger_word = "" | |
for model in model_data["modelVersions"]: | |
if(model["baseModel"] == "SDXL 1.0"): | |
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}" | |
safetensors_name = model["files"][0]["name"] | |
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")): | |
safetensors_file_request = requests.get(model_link_download) | |
if(safetensors_file_request.status_code != 200): | |
raise Exception("Invalid CivitAI download link") | |
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file: | |
file.write(safetensors_file_request.content) | |
trigger_word = model.get("trainedWords", [""])[0] | |
for image in model["images"]: | |
image_url = image["url"] | |
break | |
# if(image["nsfwLevel"] == 1): | |
# image_url = image["url"] | |
# break | |
break | |
if(not model_link_download): | |
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent") | |
raise Exception("We couldn't find a SDXL LoRA on the model you've sent") | |
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url | |
def check_custom_model(link): | |
if(link.startswith("https://")): | |
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")): | |
link_split = link.split("huggingface.co/") | |
return get_huggingface_safetensors(link_split[1]) | |
elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")): | |
return get_civitai_safetensors(link) | |
else: | |
return get_huggingface_safetensors(link) | |
def show_loading_widget(): | |
return gr.update(visible=True) | |
def load_custom_lora(link): | |
try: | |
title, path, trigger_word, image = check_custom_model(link) | |
card = f''' | |
<div class="custom_lora_card"> | |
<span>Loaded custom LoRA:</span> | |
<div class="card_internal"> | |
<img src="{image}" /> | |
<div> | |
<h3>{title}</h3> | |
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
</div> | |
</div> | |
</div> | |
''' | |
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}" | |
except Exception as e: | |
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content") | |
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True) | |
def remove_custom_lora(): | |
return "", gr.update(visible=False), gr.update(visible=False), None | |
with gr.Blocks(css="custom.css") as demo: | |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
title = gr.HTML( | |
"""<h1> | |
<span>Face to All<br><small style=" | |
font-size: 13px; | |
display: block; | |
font-weight: normal; | |
opacity: 0.75; | |
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""", | |
elem_id="title", | |
) | |
selected_state = gr.State() | |
custom_loaded_lora = gr.State() | |
with gr.Row(elem_id="main_app"): | |
with gr.Column(scale=4, elem_id="box_column"): | |
with gr.Group(elem_id="gallery_box"): | |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300) | |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) | |
#order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") | |
#new_gallery = gr.Gallery( | |
# label="New LoRAs", | |
# elem_id="gallery_new", | |
# columns=3, | |
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False) | |
gallery = gr.Gallery( | |
#value=[(item["image"], item["title"]) for item in sdxl_loras], | |
label="Pick a style from the gallery", | |
allow_preview=False, | |
columns=4, | |
elem_id="gallery", | |
show_share_button=False, | |
height=550 | |
) | |
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA (Example: https://civitai.com/models/262880/eldritch-comics-comic-book-style-illustration?modelVersionId=305491)", placeholder="Paste Hugging Face or CivitAI model path...") | |
custom_model_card = gr.HTML(visible=False) | |
custom_model_button = gr.Button("Remove custom LoRA", visible=False) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt") | |
button = gr.Button("Run", elem_id="run_button") | |
result = gr.Image( | |
interactive=False, label="Generated Image", elem_id="result-image" | |
) | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
with gr.Accordion("Advanced options", open=False): | |
negative = gr.Textbox(label="Negative Prompt") | |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight") | |
face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models") | |
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo") | |
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale") | |
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght") | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", | |
visible=True, | |
elem_id="selected_lora", | |
) | |
#order_gallery.change( | |
# fn=swap_gallery, | |
# inputs=[order_gallery, gr_sdxl_loras], | |
# outputs=[gallery, gr_sdxl_loras], | |
# queue=False | |
#) | |
custom_model.input( | |
fn=load_custom_lora, | |
inputs=[custom_model], | |
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title], | |
queue=False | |
) | |
custom_model_button.click( | |
fn=remove_custom_lora, | |
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora] | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative], | |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state], | |
queue=False, | |
show_progress=False | |
) | |
#new_gallery.select( | |
# fn=update_selection, | |
# inputs=[gr_sdxl_loras_new, gr.State(True)], | |
# outputs=[prompt_title, prompt, prompt, selected_state, gallery], | |
# queue=False, | |
# show_progress=False | |
#) | |
prompt.submit( | |
fn=check_selected, | |
inputs=[selected_state, custom_loaded_lora], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], | |
outputs=[result, share_group], | |
) | |
button.click( | |
fn=check_selected, | |
inputs=[selected_state, custom_loaded_lora], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora], | |
outputs=[result, share_group], | |
) | |
share_button.click(None, [], [], js=share_js) | |
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js) | |
demo.queue(max_size=20) | |
demo.launch(share=True) | |