|
import gradio as gr |
|
|
|
from PIL import Image |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
|
|
import os |
|
import openai |
|
import subprocess |
|
from pathlib import Path |
|
import uuid |
|
import tempfile |
|
import shlex |
|
import shutil |
|
from utils import format_bash_command |
|
|
|
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] |
|
openai.api_key = OPENAI_API_KEY |
|
|
|
|
|
def get_files_infos(files): |
|
results = [] |
|
for file in files: |
|
file_path = Path(file.name) |
|
info = {} |
|
info["size"] = os.path.getsize(file_path) |
|
info["name"] = file_path.name |
|
file_extension = file_path.suffix |
|
|
|
if file_extension in (".mp4", ".avi", ".mkv", ".mov"): |
|
info["type"] = "video" |
|
video = VideoFileClip(file.name) |
|
info["duration"] = str(video.duration) + "s" |
|
info["dimensions"] = "{}x{}".format(video.size[0], video.size[1]) |
|
video.close() |
|
elif file_extension in (".mp3", ".wav"): |
|
info["type"] = "audio" |
|
audio = AudioFileClip(file.name) |
|
info["duration"] = str(audio.duration) + "s" |
|
audio.close() |
|
elif file_extension in ( |
|
".png", |
|
".jpg", |
|
".jpeg", |
|
".tiff", |
|
".bmp", |
|
".gif", |
|
".svg", |
|
): |
|
info["type"] = "image" |
|
img = Image.open(file.name) |
|
info["dimensions"] = "{}x{}".format(img.size[0], img.size[1]) |
|
results.append(info) |
|
return results |
|
|
|
|
|
def get_completion(prompt, files_info, top_p, temperature): |
|
|
|
files_info_string = "".join(str(x) for x in files_info) |
|
messages = [ |
|
{ |
|
"role": "system", |
|
|
|
|
|
"content": f""" |
|
You are a very experienced agent controlling a UNIX terminal and a contributor to the ffmpeg project. You are given: |
|
(1) a set of video, audio and/or image assets. Including their name, duration, dimensions and file size |
|
(2) the description of a new video you need to create from the list of assets |
|
|
|
Based on the available assets and the description, your objective issue a FFMPEG to create a new video using the assets. |
|
|
|
This will often involve putting assets one after the other, cropping the video format, or playing music in the background. Avoid using complex FFMPEG options, and try to keep the command as simple as possible as it will be directly paster into the terminal. |
|
Always output the media a video/mp4 and output file "output.mp4". Provide only the shell command without any explanations. |
|
|
|
The current assets and objective follow. Reply with the FFMPEG command: |
|
|
|
AVAILABLE ASSETS LIST: {files_info_string} |
|
OBJECTIVE: {prompt} |
|
YOUR FFMPEG COMMAND:""", |
|
} |
|
] |
|
|
|
print(messages) |
|
|
|
try: |
|
completion = openai.ChatCompletion.create(model="gpt-4", |
|
messages=messages, |
|
top_p=top_p, |
|
temperature=temperature) |
|
|
|
command = completion.choices[0].message.content.replace("\n", "") |
|
|
|
|
|
command = command.replace("output.mp4", "") |
|
|
|
return command |
|
except Exception as e: |
|
print("FROM OPENAI", e) |
|
raise Exception("OpenAI API error") |
|
|
|
|
|
def update(files, prompt, top_p=1, temperature=1): |
|
if prompt == "": |
|
raise gr.Error("Please enter a prompt.") |
|
|
|
files_info = get_files_infos(files) |
|
|
|
for file_info in files_info: |
|
if file_info["type"] == "video": |
|
duration = int(file_info["duration"].split("s")[0]) |
|
if duration > 60: |
|
raise gr.Error( |
|
"Please make sure all videos are less than 1 minute long." |
|
) |
|
if file_info["size"] > 10000000: |
|
raise gr.Error( |
|
"Please make sure all files are less than 10MB in size." |
|
) |
|
try: |
|
command_string = get_completion(prompt, files_info, top_p, temperature) |
|
print( |
|
f"""\n\n/// START OF COMMAND ///:\n{command_string}\n/// END OF COMMAND ///\n\n""") |
|
|
|
|
|
args = shlex.split(command_string) |
|
if (args[0] != "ffmpeg"): |
|
raise Exception("Command does not start with ffmpeg") |
|
temp_dir = tempfile.mkdtemp() |
|
|
|
for file in files: |
|
file_path = Path(file.name) |
|
shutil.copy(file_path, temp_dir) |
|
|
|
|
|
ffmpg_dry_run = subprocess.run( |
|
args + ["-f", "null", "-"], stderr=subprocess.PIPE, text=True, cwd=temp_dir) |
|
if ffmpg_dry_run.returncode == 0: |
|
print("Command is valid.") |
|
else: |
|
print("Command is not valid. Error output:") |
|
print(ffmpg_dry_run.stderr) |
|
raise Exception( |
|
"FFMPEG generated command is not valid. Please try again.") |
|
|
|
output_file_name = f'output_{uuid.uuid4()}.mp4' |
|
output_file_path = str((Path(temp_dir) / output_file_name).resolve()) |
|
subprocess.run(args + ["-y", output_file_path], cwd=temp_dir) |
|
generated_command = f"### Generated Command\n```bash\n{format_bash_command(args)}\n -y output.mp4\n```" |
|
return output_file_path, gr.update(value=generated_command) |
|
except Exception as e: |
|
print("FROM UPDATE", e) |
|
raise gr.Error(e) |
|
|
|
|
|
css = """ |
|
# #header { |
|
# padding: 1.5rem 0 0.8rem; |
|
# } |
|
# #header h1 { |
|
# font-size: 1.5rem; margin-bottom: 0.3rem; |
|
# } |
|
# .boundedheight, .unpadded_box { |
|
# height: 30vh !important; |
|
# max-height: 50vh !important; |
|
# } |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown( |
|
""" |
|
# <span style="margin-right: 0.3rem;">🏞</span>GPT-4 Video Composer |
|
Add video, image and audio assets and ask ChatGPT to compose a new video. |
|
""", |
|
elem_id="header", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
user_files = gr.File( |
|
file_count="multiple", label="Media files", keep_filename=True |
|
) |
|
user_prompt = gr.Textbox( |
|
placeholder="I want to convert to a gif under 15mb", |
|
label="Instructions", |
|
) |
|
btn = gr.Button("Run", label="Run") |
|
with gr.Accordion("Parameters", open=False): |
|
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, |
|
interactive=True, label="Top-p (nucleus sampling)") |
|
temperature = gr.Slider( |
|
minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature") |
|
with gr.Column(): |
|
generated_video = gr.Video( |
|
interactive=False, label="Generated Video", include_audio=True |
|
) |
|
generated_command = gr.Markdown() |
|
|
|
btn.click( |
|
fn=update, inputs=[user_files, user_prompt, top_p, temperature], |
|
outputs=[generated_video, generated_command] |
|
) |
|
with gr.Row(): |
|
gr.Examples( |
|
examples=[ |
|
[["./examples/cat8.jpeg", |
|
"./examples/cat1.jpeg", |
|
"./examples/cat2.jpeg", |
|
"./examples/cat3.jpeg", |
|
"./examples/cat4.jpeg", |
|
"./examples/cat5.jpeg", |
|
"./examples/cat6.jpeg", |
|
"./examples/cat7.jpeg"], |
|
"make a video gif given each image 1s loop", |
|
0, 0 |
|
], |
|
[ |
|
["./examples/example.mp4"], |
|
"please encode this video 10 times faster", |
|
0, 0 |
|
], |
|
[ |
|
["./examples/heat-wave.mp3", "./examples/square-image.png"], |
|
"Make a 720x720 video with a white waveform of the audio taking all screen space, also add the image as the background", |
|
0, 0 |
|
], |
|
[ |
|
["./examples/waterfall-overlay.png", |
|
"./examples/waterfall.mp4"], |
|
"Add the overlay to the video.", |
|
0, 0 |
|
], |
|
], |
|
inputs=[user_files, user_prompt, top_p, temperature], |
|
outputs=[generated_video, generated_command], |
|
fn=update, |
|
cache_examples=True, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
gr.Markdown( |
|
""" |
|
If you have idea to improve this please open a PR: |
|
|
|
[![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/raw/main/open-a-pr-lg-light.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) |
|
""", |
|
) |
|
|
|
demo.launch() |
|
|