Spaces:
Build error
Build error
import argparse, pickle | |
import logging | |
import os, random | |
import numpy as np | |
import torch | |
import torchaudio | |
import devicetorch | |
from data.tokenizer import ( | |
AudioTokenizer, | |
TextTokenizer, | |
tokenize_audio, | |
tokenize_text | |
) | |
from models import voicecraft | |
import argparse, time, tqdm | |
# this script only works for the musicgen architecture | |
def get_args(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file") | |
parser.add_argument("--audio_root", type=str, default="path/to/audio_folder") | |
parser.add_argument("--exp_dir", type=str, default="path/to/model_folder") | |
parser.add_argument("--seed", type=int, default=1) | |
parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for') | |
parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes') | |
parser.add_argument("--top_k", type=int, default=0, help="sampling param") | |
parser.add_argument("--top_p", type=float, default=0.8, help="sampling param") | |
parser.add_argument("--temperature", type=float, default=1.0, help="sampling param") | |
parser.add_argument("--output_dir", type=str, default=None) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--signature", type=str, default=None, help="path to the encodec model") | |
parser.add_argument("--crop_concat", type=int, default=0) | |
parser.add_argument("--stop_repetition", type=int, default=-1, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it") | |
parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without') | |
parser.add_argument("--sample_batch_size", type=int, default=1, help="batch size for sampling, NOTE that it's not running inference for several samples, but duplicate one input sample batch_size times, and during inference, we only return the shortest generation") | |
parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default") | |
return parser.parse_args() | |
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, device, decode_config, prompt_end_frame): | |
# phonemize | |
text_tokens = [phn2num[phn] for phn in | |
tokenize_text( | |
text_tokenizer, text=target_text.strip() | |
) if phn in phn2num | |
] | |
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0) | |
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]]) | |
# encode audio | |
encoded_frames = tokenize_audio(audio_tokenizer, audio_fn, offset=0, num_frames=prompt_end_frame) | |
original_audio = encoded_frames[0][0].transpose(2,1) # [1,T,K] | |
assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape | |
logging.info(f"original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.") | |
# forward | |
stime = time.time() | |
if decode_config['sample_batch_size'] <= 1: | |
logging.info(f"running inference with batch size 1") | |
concat_frames, gen_frames = model.inference_tts( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8] | |
top_k=decode_config['top_k'], | |
top_p=decode_config['top_p'], | |
temperature=decode_config['temperature'], | |
stop_repetition=decode_config['stop_repetition'], | |
kvcache=decode_config['kvcache'], | |
silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens'])==str else decode_config['silence_tokens'] | |
) # output is [1,K,T] | |
else: | |
logging.info(f"running inference with batch size {decode_config['sample_batch_size']}, i.e. return the shortest among {decode_config['sample_batch_size']} generations.") | |
concat_frames, gen_frames = model.inference_tts_batch( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8] | |
top_k=decode_config['top_k'], | |
top_p=decode_config['top_p'], | |
temperature=decode_config['temperature'], | |
stop_repetition=decode_config['stop_repetition'], | |
kvcache=decode_config['kvcache'], | |
batch_size = decode_config['sample_batch_size'], | |
silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens'])==str else decode_config['silence_tokens'] | |
) # output is [1,K,T] | |
logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.") | |
logging.info(f"generated encoded_frames.shape: {gen_frames.shape}, which is {gen_frames.shape[-1]/decode_config['codec_sr']} sec.") | |
# for timestamp, codes in enumerate(gen_frames[0].transpose(1,0)): | |
# logging.info(f"{timestamp}: {codes.tolist()}") | |
# decode (both original and generated) | |
concat_sample = audio_tokenizer.decode( | |
[(concat_frames, None)] # [1,T,8] -> [1,8,T] | |
) | |
gen_sample = audio_tokenizer.decode( | |
[(gen_frames, None)] | |
) | |
# return | |
return concat_sample, gen_sample | |
def get_model(exp_dir, device=None): | |
with open(os.path.join(exp_dir, "args.pkl"), "rb") as f: | |
model_args = pickle.load(f) | |
logging.info("load model weights...") | |
model = voicecraft.VoiceCraft(model_args) | |
ckpt_fn = os.path.join(exp_dir, "best_bundle.pth") | |
ckpt = torch.load(ckpt_fn, map_location='cpu')['model'] | |
phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num'] | |
model.load_state_dict(ckpt) | |
del ckpt | |
logging.info("done loading weights...") | |
if device == None: | |
device = devicetorch.get(torch) | |
# device = torch.device("cpu") | |
# if torch.cuda.is_available(): | |
# device = torch.device("cuda:0") | |
model.to(device) | |
model.eval() | |
return model, model_args, phn2num | |
if __name__ == "__main__": | |
def seed_everything(seed): | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
device = devicetorch.get(torch) | |
if device == "cuda": | |
torch.cuda.manual_seed(seed) | |
elif device == "mps": | |
torch.mps.manual_seed(seed) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
formatter = ( | |
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
args = get_args() | |
# args.device='cpu' | |
seed_everything(args.seed) | |
os.makedirs(args.output_dir, exist_ok=True) | |
# load model | |
with open(args.manifest_fn, "r") as rf: | |
manifest = [l.strip().split("\t") for l in rf.readlines()] | |
manifest = manifest[1:] | |
manifest = [[item[0], item[2], item[3], item[1], item[5]] for item in manifest] | |
stime = time.time() | |
logging.info(f"loading model from {args.exp_dir}") | |
model, model_args, phn2num = get_model(args.exp_dir) | |
logging.info(f"loading model done, took {time.time() - stime:.4f} sec") | |
# setup text and audio tokenizer | |
text_tokenizer = TextTokenizer(backend="espeak") | |
audio_tokenizer = AudioTokenizer(signature=args.signature) # will also put the neural codec model on gpu | |
audio_fns = [] | |
texts = [] | |
prompt_end_frames = [] | |
new_audio_fns = [] | |
text_to_syn = [] | |
for item in manifest: | |
audio_fn = os.path.join(args.audio_root, item[0]) | |
audio_fns.append(audio_fn) | |
temp = torchaudio.info(audio_fn) | |
prompt_end_frames.append(round(float(item[2])*temp.sample_rate)) | |
texts.append(item[1]) | |
new_audio_fns.append(item[-2]) | |
all_text = item[1].split(" ") | |
start_ind = int(item[-1].split(",")[0]) | |
text_to_syn.append(" ".join(all_text[start_ind:])) | |
for i, (audio_fn, text, prompt_end_frame, new_audio_fn, to_syn) in enumerate(tqdm.tqdm((zip(audio_fns, texts, prompt_end_frames, new_audio_fns, text_to_syn)))): | |
output_expected_sr = args.codec_audio_sr | |
concated_audio, gen_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, text, args.device, vars(args), prompt_end_frame) | |
# save segments for comparison | |
concated_audio, gen_audio = concated_audio[0].cpu(), gen_audio[0].cpu() | |
if output_expected_sr != args.codec_audio_sr: | |
gen_audio = torchaudio.transforms.Resample(output_expected_sr, args.codec_audio_sr)(gen_audio) | |
concated_audio = torchaudio.transforms.Resample(output_expected_sr, args.codec_audio_sr)(concated_audio) | |
seg_save_fn_gen = f"{args.output_dir}/gen_{new_audio_fn[:-4]}_{i}_seed{args.seed}.wav" | |
seg_save_fn_concat = f"{args.output_dir}/concat_{new_audio_fn[:-4]}_{i}_seed{args.seed}.wav" | |
torchaudio.save(seg_save_fn_gen, gen_audio, args.codec_audio_sr) | |
torchaudio.save(seg_save_fn_concat, concated_audio, args.codec_audio_sr) | |