Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.schedulers import TCDScheduler | |
import spaces | |
from PIL import Image | |
SAFETY_CHECKER = True | |
# Constants | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
checkpoints = { | |
"2-Step": ["pcm_sdxl_smallcfg_2step_converted.safetensors", 2, 0.0], | |
"4-Step": ["pcm_sdxl_smallcfg_4step_converted.safetensors", 4, 0.0], | |
"8-Step": ["pcm_sdxl_smallcfg_8step_converted.safetensors", 8, 0.0], | |
"16-Step": ["pcm_sdxl_smallcfg_16step_converted.safetensors", 16, 0.0], | |
"Normal CFG 4-Step": ["pcm_sdxl_normalcfg_4step_converted.safetensors", 4, 7.5], | |
"Normal CFG 8-Step": ["pcm_sdxl_normalcfg_8step_converted.safetensors", 8, 7.5], | |
"Normal CFG 16-Step": ["pcm_sdxl_normalcfg_16step_converted.safetensors", 16, 7.5], | |
"LCM-Like LoRA": ["pcm_sdxl_lcmlike_lora_converted.safetensors", 16, 0.0], | |
} | |
loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base, torch_dtype=torch.float16, variant="fp16" | |
).to("cuda") | |
if SAFETY_CHECKER: | |
from safety_checker import StableDiffusionSafetyChecker | |
from transformers import CLIPFeatureExtractor | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker" | |
).to("cuda") | |
feature_extractor = CLIPFeatureExtractor.from_pretrained( | |
"openai/clip-vit-base-patch32" | |
) | |
def check_nsfw_images( | |
images: list[Image.Image], | |
) -> tuple[list[Image.Image], list[bool]]: | |
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda") | |
has_nsfw_concepts = safety_checker( | |
images=[images], clip_input=safety_checker_input.pixel_values.to("cuda") | |
) | |
return images, has_nsfw_concepts | |
# Function | |
def generate_image(prompt, ckpt): | |
global loaded | |
print(prompt, ckpt) | |
checkpoint = checkpoints[ckpt][0] | |
num_inference_steps = checkpoints[ckpt][1] | |
guidance_scale = checkpoints[ckpt][2] | |
if loaded != num_inference_steps: | |
pipe.scheduler = TCDScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
timestep_spacing="trailing", | |
) | |
pipe.load_lora_weights( | |
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder="sdxl" | |
) | |
loaded = num_inference_steps | |
results = pipe( | |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale | |
) | |
if SAFETY_CHECKER: | |
images, has_nsfw_concepts = check_nsfw_images(results.images) | |
if any(has_nsfw_concepts): | |
gr.Warning("NSFW content detected.") | |
return Image.new("RGB", (512, 512)) | |
return images[0] | |
return results.images[0] | |
# Gradio Interface | |
css = """ | |
.gradio-container { | |
max-width: 60rem !important; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>") | |
gr.HTML( | |
"<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Enter your prompt (English)", scale=8) | |
ckpt = gr.Dropdown( | |
label="Select inference steps", | |
choices=list(checkpoints.keys()), | |
value="4-Step", | |
interactive=True, | |
) | |
submit = gr.Button(scale=1, variant="primary") | |
img = gr.Image(label="SDXL-Lightning Generated Image") | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
demo.queue().launch() | |