Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
import gradio as gr | |
from timeit import default_timer as timer | |
import torch | |
import numpy as np | |
import pandas as pd | |
from huggingface_hub import hf_hub_download | |
from model.bart import BartCaptionModel | |
from utils.audio_utils import load_audio, STR_CH_FIRST | |
if os.path.isfile("transfer.pth") == False: | |
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth', 'transfer.pth') | |
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3', 'electronic.mp3') | |
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav', 'orchestra.wav') | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
example_list = ['electronic.mp3', 'orchestra.wav'] | |
model = BartCaptionModel(max_length = 128) | |
pretrained_object = torch.load('./transfer.pth', map_location='cpu') | |
state_dict = pretrained_object['state_dict'] | |
model.load_state_dict(state_dict) | |
if torch.cuda.is_available(): | |
torch.cuda.set_device(device) | |
model = model.cuda(device) | |
model.eval() | |
def get_audio(audio_path, duration=10, target_sr=16000): | |
n_samples = int(duration * target_sr) | |
audio, sr = load_audio( | |
path= audio_path, | |
ch_format= STR_CH_FIRST, | |
sample_rate= target_sr, | |
downmix_to_mono= True, | |
) | |
if len(audio.shape) == 2: | |
audio = audio.mean(0, False) # to mono | |
input_size = int(n_samples) | |
if audio.shape[-1] < input_size: # pad sequence | |
pad = np.zeros(input_size) | |
pad[: audio.shape[-1]] = audio | |
audio = pad | |
ceil = int(audio.shape[-1] // n_samples) | |
audio = torch.from_numpy(np.stack(np.split(audio[:ceil * n_samples], ceil)).astype('float32')) | |
return audio | |
def captioning(audio_path): | |
audio_tensor = get_audio(audio_path = audio_path) | |
if torch.cuda.is_available(): | |
audio_tensor = audio_tensor.to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
samples=audio_tensor, | |
num_beams=5, | |
) | |
inference = "" | |
number_of_chunks = range(audio_tensor.shape[0]) | |
for chunk, text in zip(number_of_chunks, output): | |
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]" | |
inference += f"{time}\n{text} \n \n" | |
return inference | |
title = "Interactive demo: Music Captioning 🤖🎵" | |
description = """ | |
<p style='text-align: center'> LP-MusicCaps: LLM-Based Pseudo Music Captioning</p> | |
<p style='text-align: center'> SeungHeon Doh, Keunwoo Choi, Jongpil Lee, Juhan Nam, ISMIR 2023</p> | |
<p style='text-align: center'> <a href='#' target='_blank'>ArXiv</a> | <a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>Github</a> | <a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>LP-MusicCaps-Dataset</a> </p> | |
<p style='text-align: center'> To use it, simply upload your audio and click 'submit', or click one of the examples to load them. Read more at the links below. </p> | |
""" | |
article = "<p style='text-align: center'><a href='https://github.com/seungheondoh/lp-music-caps' target='_blank'>LP-MusicCaps Github</a> | <a href='#' target='_blank'>LP-MusicCaps Paper</a></p>" | |
demo = gr.Interface(fn=captioning, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[ | |
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"), | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
cache_examples=False | |
) | |
demo.launch() |