Spaces:
Runtime error
Runtime error
import sys | |
sys.path.append('./') | |
import os | |
import cv2 | |
import torch | |
import random | |
import numpy as np | |
from PIL import Image | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline | |
import spaces | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from ip_adapter import IPAdapterXL | |
hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/image_encoder", local_dir="./sdxl_models") | |
hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/ip-adapter_sdxl.bin", local_dir="./sdxl_models") | |
# global variable | |
MAX_SEED = np.iinfo(np.int32).max | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
# initialization | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = "sdxl_models/image_encoder" | |
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" | |
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0" | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=torch.float16).to(device) | |
# load SDXL pipeline | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
add_watermarker=False, | |
) | |
# load ip-adapter | |
# target_blocks=["block"] for original IP-Adapter | |
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def resize_img( | |
input_image, | |
max_side=1280, | |
min_side=1024, | |
size=None, | |
pad_to_max_side=False, | |
mode=Image.BILINEAR, | |
base_pixel_number=64, | |
): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio * w), round(ratio * h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[ | |
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new | |
] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def get_example(): | |
case = [ | |
[ | |
"./assets/0.jpg", | |
None, | |
"a cat, masterpiece, best quality, high quality", | |
1.0, | |
0.0 | |
], | |
[ | |
"./assets/1.jpg", | |
None, | |
"a cat, masterpiece, best quality, high quality", | |
1.0, | |
0.0 | |
], | |
[ | |
"./assets/2.jpg", | |
None, | |
"a cat, masterpiece, best quality, high quality", | |
1.0, | |
0.0 | |
], | |
[ | |
"./assets/3.jpg", | |
None, | |
"a cat, masterpiece, best quality, high quality", | |
1.0, | |
0.0 | |
], | |
[ | |
"./assets/2.jpg", | |
"./assets/yann-lecun.jpg", | |
"a man, masterpiece, best quality, high quality", | |
1.0, | |
0.6 | |
], | |
] | |
return case | |
def run_for_examples(style_image, source_image, prompt, scale, control_scale): | |
return create_image( | |
image_pil=style_image, | |
input_image=source_image, | |
prompt=prompt, | |
n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
scale=scale, | |
control_scale=control_scale, | |
guidance_scale=5, | |
num_samples=1, | |
num_inference_steps=30, | |
seed=42, | |
target="Load only style blocks", | |
neg_content_prompt="", | |
neg_content_scale=0, | |
) | |
def create_image(image_pil, | |
input_image, | |
prompt, | |
n_prompt, | |
scale, | |
control_scale, | |
guidance_scale, | |
num_samples, | |
num_inference_steps, | |
seed, | |
target="Load only style blocks", | |
neg_content_prompt=None, | |
neg_content_scale=0): | |
if target =="Load original IP-Adapter": | |
# target_blocks=["blocks"] for original IP-Adapter | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]) | |
elif target=="Load only style blocks": | |
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) | |
elif target == "Load style+layout block": | |
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]) | |
if input_image is not None: | |
input_image = resize_img(input_image, max_side=1024) | |
cv_input_image = pil_to_cv2(input_image) | |
detected_map = cv2.Canny(cv_input_image, 50, 200) | |
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)) | |
else: | |
canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255)) | |
control_scale = 0 | |
if float(control_scale) == 0: | |
canny_map = canny_map.resize((1024,1024)) | |
if len(neg_content_prompt) > 0 and neg_content_scale != 0: | |
images = ip_model.generate(pil_image=image_pil, | |
prompt=prompt, | |
negative_prompt=n_prompt, | |
scale=scale, | |
guidance_scale=guidance_scale, | |
num_samples=num_samples, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
image=canny_map, | |
controlnet_conditioning_scale=float(control_scale), | |
neg_content_prompt=neg_content_prompt, | |
neg_content_scale=neg_content_scale | |
) | |
else: | |
images = ip_model.generate(pil_image=image_pil, | |
prompt=prompt, | |
negative_prompt=n_prompt, | |
scale=scale, | |
guidance_scale=guidance_scale, | |
num_samples=num_samples, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
image=canny_map, | |
controlnet_conditioning_scale=float(control_scale), | |
) | |
return images | |
def pil_to_cv2(image_pil): | |
image_np = np.array(image_pil) | |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
return image_cv2 | |
# Description | |
title = r""" | |
<h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1> | |
""" | |
description = r""" | |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'><b>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</b></a>.<br> | |
How to use:<br> | |
1. Upload a style image. | |
2. Set stylization mode, only use style block by default. | |
2. Enter a text prompt, as done in normal text-to-image models. | |
3. Click the <b>Submit</b> button to begin customization. | |
4. Share your stylized photo with your friends and enjoy! 😊 | |
Advanced usage:<br> | |
1. Click advanced options. | |
2. Upload another source image for image-based stylization using ControlNet. | |
3. Enter negative content prompt to avoid content leakage. | |
""" | |
article = r""" | |
--- | |
📝 **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
@article{wang2024instantstyle, | |
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
journal={arXiv preprint arXiv:2404.02733}, | |
year={2024} | |
} | |
``` | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>. | |
""" | |
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) | |
with block: | |
# description | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
image_pil = gr.Image(label="Style Image", type='pil') | |
target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"], | |
value="Load only style blocks", | |
label="Style mode") | |
prompt = gr.Textbox(label="Prompt", | |
value="a cat, masterpiece, best quality, high quality") | |
scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
with gr.Column(): | |
src_image_pil = gr.Image(label="Source Image (optional)", type='pil') | |
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale") | |
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry") | |
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="") | |
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale") | |
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale") | |
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples") | |
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps") | |
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
generate_button = gr.Button("Generate Image") | |
with gr.Column(): | |
generated_image = gr.Gallery(label="Generated Image") | |
generate_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=create_image, | |
inputs=[image_pil, | |
src_image_pil, | |
prompt, | |
n_prompt, | |
scale, | |
control_scale, | |
guidance_scale, | |
num_samples, | |
num_inference_steps, | |
seed, | |
target, | |
neg_content_prompt, | |
neg_content_scale], | |
outputs=[generated_image]) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[image_pil, src_image_pil, prompt, scale, control_scale], | |
fn=run_for_examples, | |
outputs=[generated_image], | |
cache_examples=True, | |
) | |
gr.Markdown(article) | |
block.launch(server_name="10.4.200.46") |