cocktailpeanut commited on
Commit
23a7ae2
·
1 Parent(s): aa247f2
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -20,7 +20,7 @@ from torch import autocast
20
  import cv2
21
  import imageio
22
  import devicetorch
23
- device = devicetorch.get(torch)
24
 
25
  sys.path.append("./stable_diffusion")
26
 
@@ -85,7 +85,7 @@ class CompVisDenoiser(K.external.CompVisDenoiser):
85
  def forward(self, input_0, input_1, sigma, **kwargs):
86
  c_out, c_in = [append_dims(x, input_0.ndim) for x in self.get_scalings(sigma)]
87
  # eps_0, eps_1 = self.get_eps(input_0 * c_in, input_1 * c_in, self.sigma_to_t(sigma), **kwargs)
88
- eps_0, eps_1 = self.get_eps(input_0 * c_in, self.sigma_to_t(sigma.cpu().float()).to(device), **kwargs)
89
 
90
  return input_0 + eps_0 * c_out, eps_1
91
 
@@ -122,7 +122,6 @@ def sample_euler_ancestral(model, x_0, x_1, sigmas, height, width, extra_args=No
122
 
123
  mask_list = []
124
  image_list = []
125
- model.to(device)
126
  for i in trange(len(sigmas) - 1, disable=disable):
127
  denoised_0, denoised_1 = model(x_0, x_1, sigmas[i] * s_in, **extra_args)
128
  image_list.append(denoised_0)
@@ -153,7 +152,7 @@ args = parser.parse_args()
153
 
154
  config = OmegaConf.load(args.config)
155
  model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
156
- model.eval().to(device)
157
  model_wrap = CompVisDenoiser(model)
158
  model_wrap_cfg = CFGDenoiser(model_wrap)
159
  null_token = model.get_learned_conditioning([""])
@@ -186,8 +185,8 @@ def generate(
186
  if instruction == "":
187
  return [input_image, seed]
188
 
189
- model.to(device)
190
- if device == "cuda":
191
  with torch.no_grad(), autocast("cuda"), model.ema_scope():
192
  return run(model, input_image, input_image_copy, width, height, instruction, steps, seed)
193
  else:
 
20
  import cv2
21
  import imageio
22
  import devicetorch
23
+ DEVICE = devicetorch.get(torch)
24
 
25
  sys.path.append("./stable_diffusion")
26
 
 
85
  def forward(self, input_0, input_1, sigma, **kwargs):
86
  c_out, c_in = [append_dims(x, input_0.ndim) for x in self.get_scalings(sigma)]
87
  # eps_0, eps_1 = self.get_eps(input_0 * c_in, input_1 * c_in, self.sigma_to_t(sigma), **kwargs)
88
+ eps_0, eps_1 = self.get_eps(input_0 * c_in, self.sigma_to_t(sigma.cpu().float()).to(DEVICE), **kwargs)
89
 
90
  return input_0 + eps_0 * c_out, eps_1
91
 
 
122
 
123
  mask_list = []
124
  image_list = []
 
125
  for i in trange(len(sigmas) - 1, disable=disable):
126
  denoised_0, denoised_1 = model(x_0, x_1, sigmas[i] * s_in, **extra_args)
127
  image_list.append(denoised_0)
 
152
 
153
  config = OmegaConf.load(args.config)
154
  model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
155
+ model.eval().to(DEVICE)
156
  model_wrap = CompVisDenoiser(model)
157
  model_wrap_cfg = CFGDenoiser(model_wrap)
158
  null_token = model.get_learned_conditioning([""])
 
185
  if instruction == "":
186
  return [input_image, seed]
187
 
188
+ model.to(DEVICE)
189
+ if DEVICE == "cuda":
190
  with torch.no_grad(), autocast("cuda"), model.ema_scope():
191
  return run(model, input_image, input_image_copy, width, height, instruction, steps, seed)
192
  else: