Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from PIL import Image | |
import numpy as np | |
from aura_sr import AuraSR | |
import torch | |
#import spaces | |
import devicetorch | |
device = devicetorch.get(torch) | |
# Force CPU usage | |
torch.set_default_tensor_type(torch.FloatTensor) | |
# Override torch.load to always use CPU | |
original_load = torch.load | |
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) | |
# Initialize the AuraSR model | |
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR", device=device) | |
# Restore original torch.load | |
torch.load = original_load | |
#@spaces.GPU | |
def process_image(input_image): | |
if input_image is None: | |
return None | |
# Convert to PIL Image for resizing | |
pil_image = Image.fromarray(input_image) | |
# Upscale the image using AuraSR | |
with torch.no_grad(): | |
upscaled_image = aura_sr.upscale_4x(pil_image) | |
# Convert result to numpy array if it's not already | |
result_array = np.array(upscaled_image) | |
return [input_image, result_array] | |
title = """<h1 align="center">AuraSR - An open reproduction of the GigaGAN Upscaler from fal.ai</h1> | |
<p><center> | |
<a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a> | |
<a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[Model Page]</a> | |
</center></p> | |
""" | |
with gr.Blocks() as demo: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
process_btn = gr.Button("Upscale Image") | |
with gr.Column(scale=1): | |
output_slider = ImageSlider(label="Before / After", type="numpy") | |
process_btn.click( | |
fn=process_image, | |
inputs=[input_image], | |
outputs=output_slider | |
) | |
# Add examples | |
gr.Examples( | |
examples=[ | |
"image1.png", | |
"image2.png", | |
"image3.png" | |
], | |
inputs=input_image, | |
outputs=output_slider, | |
fn=process_image, | |
cache_examples=True | |
) | |
demo.launch(debug=True) | |