Spaces:
Runtime error
Runtime error
foivospar
commited on
Commit
•
1c1d081
1
Parent(s):
0259ae0
initial demo
Browse files- app.py +231 -0
- arc2face/__init__.py +2 -0
- arc2face/models.py +91 -0
- arc2face/utils.py +30 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('./')
|
3 |
+
|
4 |
+
from diffusers import (
|
5 |
+
StableDiffusionPipeline,
|
6 |
+
UNet2DConditionModel,
|
7 |
+
DPMSolverMultistepScheduler,
|
8 |
+
)
|
9 |
+
|
10 |
+
from arc2face import CLIPTextModelWrapper, project_face_embs
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from insightface.app import FaceAnalysis
|
14 |
+
from PIL import Image
|
15 |
+
import numpy as np
|
16 |
+
import random
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
# global variable
|
21 |
+
MAX_SEED = np.iinfo(np.int32).max
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
device = "cuda"
|
24 |
+
dtype = torch.float16
|
25 |
+
else:
|
26 |
+
device = "cpu"
|
27 |
+
dtype = torch.float32
|
28 |
+
|
29 |
+
|
30 |
+
# download models
|
31 |
+
from huggingface_hub import hf_hub_download
|
32 |
+
|
33 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models")
|
34 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models")
|
35 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models")
|
36 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models")
|
37 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2")
|
38 |
+
|
39 |
+
# Load face detection and recognition package
|
40 |
+
if device=="cuda":
|
41 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
42 |
+
else:
|
43 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
|
44 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
45 |
+
|
46 |
+
# Load pipeline
|
47 |
+
base_model = 'runwayml/stable-diffusion-v1-5'
|
48 |
+
encoder = CLIPTextModelWrapper.from_pretrained(
|
49 |
+
'models', subfolder="encoder", torch_dtype=dtype
|
50 |
+
)
|
51 |
+
unet = UNet2DConditionModel.from_pretrained(
|
52 |
+
'models', subfolder="arc2face", torch_dtype=dtype
|
53 |
+
)
|
54 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
55 |
+
base_model,
|
56 |
+
text_encoder=encoder,
|
57 |
+
unet=unet,
|
58 |
+
torch_dtype=dtype,
|
59 |
+
safety_checker=None
|
60 |
+
)
|
61 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
62 |
+
pipeline = pipeline.to(device)
|
63 |
+
|
64 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
65 |
+
if randomize_seed:
|
66 |
+
seed = random.randint(0, MAX_SEED)
|
67 |
+
return seed
|
68 |
+
|
69 |
+
def get_example():
|
70 |
+
case = [
|
71 |
+
[
|
72 |
+
'./assets/examples/freeman.jpg',
|
73 |
+
],
|
74 |
+
[
|
75 |
+
'./assets/examples/lily.png',
|
76 |
+
],
|
77 |
+
[
|
78 |
+
'./assets/examples/joacquin.png',
|
79 |
+
],
|
80 |
+
[
|
81 |
+
'./assets/examples/jackie.png',
|
82 |
+
],
|
83 |
+
[
|
84 |
+
'./assets/examples/freddie.png',
|
85 |
+
],
|
86 |
+
[
|
87 |
+
'./assets/examples/hepburn.png',
|
88 |
+
],
|
89 |
+
]
|
90 |
+
return case
|
91 |
+
|
92 |
+
def run_example(img_file):
|
93 |
+
return generate_image(img_file, 25, 3, 23, 2)
|
94 |
+
|
95 |
+
|
96 |
+
def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)):
|
97 |
+
|
98 |
+
if image_path is None:
|
99 |
+
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
100 |
+
|
101 |
+
img = np.array(Image.open(image_path))[:,:,::-1]
|
102 |
+
|
103 |
+
# Face detection and ID-embedding extraction
|
104 |
+
faces = app.get(img)
|
105 |
+
|
106 |
+
if len(faces) == 0:
|
107 |
+
raise gr.Error(f"Face detection failed! Please try with another image")
|
108 |
+
|
109 |
+
faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # select largest face (if more than one detected)
|
110 |
+
id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device)
|
111 |
+
id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True) # normalize embedding
|
112 |
+
id_emb = project_face_embs(pipeline, id_emb) # pass throught the encoder
|
113 |
+
|
114 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
115 |
+
|
116 |
+
print("Start inference...")
|
117 |
+
images = pipeline(
|
118 |
+
prompt_embeds=id_emb,
|
119 |
+
num_inference_steps=num_steps,
|
120 |
+
guidance_scale=guidance_scale,
|
121 |
+
num_images_per_prompt=num_images,
|
122 |
+
generator=generator
|
123 |
+
).images
|
124 |
+
|
125 |
+
return images
|
126 |
+
|
127 |
+
### Description
|
128 |
+
title = r"""
|
129 |
+
<h1>Arc2Face: A Foundation Model of Human Faces</h1>
|
130 |
+
"""
|
131 |
+
|
132 |
+
description = r"""
|
133 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://arc2face.github.io/' target='_blank'><b>Arc2Face: A Foundation Model of Human Faces</b></a>.<br>
|
134 |
+
|
135 |
+
Steps:<br>
|
136 |
+
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
|
137 |
+
2. Click <b>Submit</b> to generate new images of the subject.
|
138 |
+
"""
|
139 |
+
|
140 |
+
Footer = r"""
|
141 |
+
---
|
142 |
+
📝 **Citation**
|
143 |
+
<br>
|
144 |
+
If you find Arc2Face helpful for your research, please consider citing our paper:
|
145 |
+
```bibtex
|
146 |
+
@misc{paraperas2024arc2face,
|
147 |
+
title={Arc2Face: A Foundation Model of Human Faces},
|
148 |
+
author={Foivos Paraperas Papantoniou and Alexandros Lattas and Stylianos Moschoglou and Jiankang Deng and Bernhard Kainz and Stefanos Zafeiriou},
|
149 |
+
year={2024},
|
150 |
+
eprint={2403.11641},
|
151 |
+
archivePrefix={arXiv},
|
152 |
+
primaryClass={cs.CV}
|
153 |
+
}
|
154 |
+
```
|
155 |
+
"""
|
156 |
+
|
157 |
+
css = '''
|
158 |
+
.gradio-container {width: 85% !important}
|
159 |
+
'''
|
160 |
+
with gr.Blocks(css=css) as demo:
|
161 |
+
|
162 |
+
# description
|
163 |
+
gr.Markdown(title)
|
164 |
+
gr.Markdown(description)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
|
169 |
+
# upload face image
|
170 |
+
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
|
171 |
+
|
172 |
+
submit = gr.Button("Submit", variant="primary")
|
173 |
+
|
174 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
175 |
+
num_steps = gr.Slider(
|
176 |
+
label="Number of sample steps",
|
177 |
+
minimum=20,
|
178 |
+
maximum=100,
|
179 |
+
step=1,
|
180 |
+
value=25,
|
181 |
+
)
|
182 |
+
guidance_scale = gr.Slider(
|
183 |
+
label="Guidance scale",
|
184 |
+
minimum=0.1,
|
185 |
+
maximum=10.0,
|
186 |
+
step=0.1,
|
187 |
+
value=3,
|
188 |
+
)
|
189 |
+
num_images = gr.Slider(
|
190 |
+
label="Number of output images",
|
191 |
+
minimum=1,
|
192 |
+
maximum=4,
|
193 |
+
step=1,
|
194 |
+
value=2,
|
195 |
+
)
|
196 |
+
seed = gr.Slider(
|
197 |
+
label="Seed",
|
198 |
+
minimum=0,
|
199 |
+
maximum=MAX_SEED,
|
200 |
+
step=1,
|
201 |
+
value=0,
|
202 |
+
)
|
203 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
204 |
+
|
205 |
+
with gr.Column():
|
206 |
+
gallery = gr.Gallery(label="Generated Images")
|
207 |
+
|
208 |
+
submit.click(
|
209 |
+
fn=randomize_seed_fn,
|
210 |
+
inputs=[seed, randomize_seed],
|
211 |
+
outputs=seed,
|
212 |
+
queue=False,
|
213 |
+
api_name=False,
|
214 |
+
).then(
|
215 |
+
fn=generate_image,
|
216 |
+
inputs=[img_file, num_steps, guidance_scale, seed, num_images],
|
217 |
+
outputs=[gallery]
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
gr.Examples(
|
222 |
+
examples=get_example(),
|
223 |
+
inputs=[img_file],
|
224 |
+
run_on_click=True,
|
225 |
+
fn=run_example,
|
226 |
+
outputs=[gallery],
|
227 |
+
)
|
228 |
+
|
229 |
+
gr.Markdown(Footer)
|
230 |
+
|
231 |
+
demo.launch()
|
arc2face/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .models import CLIPTextModelWrapper
|
2 |
+
from .utils import project_face_embs
|
arc2face/models.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import CLIPTextModel
|
3 |
+
from typing import Any, Callable, Dict, Optional, Tuple, Union, List
|
4 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
5 |
+
from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
|
6 |
+
|
7 |
+
|
8 |
+
class CLIPTextModelWrapper(CLIPTextModel):
|
9 |
+
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812
|
10 |
+
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them.
|
11 |
+
def forward(
|
12 |
+
self,
|
13 |
+
input_ids: Optional[torch.Tensor] = None,
|
14 |
+
attention_mask: Optional[torch.Tensor] = None,
|
15 |
+
position_ids: Optional[torch.Tensor] = None,
|
16 |
+
output_attentions: Optional[bool] = None,
|
17 |
+
output_hidden_states: Optional[bool] = None,
|
18 |
+
return_dict: Optional[bool] = None,
|
19 |
+
input_token_embs: Optional[torch.Tensor] = None,
|
20 |
+
return_token_embs: Optional[bool] = False,
|
21 |
+
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]:
|
22 |
+
|
23 |
+
if return_token_embs:
|
24 |
+
return self.text_model.embeddings.token_embedding(input_ids)
|
25 |
+
|
26 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
27 |
+
|
28 |
+
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions
|
29 |
+
output_hidden_states = (
|
30 |
+
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states
|
31 |
+
)
|
32 |
+
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict
|
33 |
+
|
34 |
+
if input_ids is None:
|
35 |
+
raise ValueError("You have to specify input_ids")
|
36 |
+
|
37 |
+
input_shape = input_ids.size()
|
38 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
39 |
+
|
40 |
+
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs)
|
41 |
+
|
42 |
+
# CLIP's text model uses causal mask, prepare it here.
|
43 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
44 |
+
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
|
45 |
+
# expand attention_mask
|
46 |
+
if attention_mask is not None:
|
47 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
48 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
49 |
+
|
50 |
+
encoder_outputs = self.text_model.encoder(
|
51 |
+
inputs_embeds=hidden_states,
|
52 |
+
attention_mask=attention_mask,
|
53 |
+
causal_attention_mask=causal_attention_mask,
|
54 |
+
output_attentions=output_attentions,
|
55 |
+
output_hidden_states=output_hidden_states,
|
56 |
+
return_dict=return_dict,
|
57 |
+
)
|
58 |
+
|
59 |
+
last_hidden_state = encoder_outputs[0]
|
60 |
+
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state)
|
61 |
+
|
62 |
+
if self.text_model.eos_token_id == 2:
|
63 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
64 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
65 |
+
# ------------------------------------------------------------
|
66 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
67 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
68 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
69 |
+
pooled_output = last_hidden_state[
|
70 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
71 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
72 |
+
]
|
73 |
+
else:
|
74 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
75 |
+
pooled_output = last_hidden_state[
|
76 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
77 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
78 |
+
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id)
|
79 |
+
.int()
|
80 |
+
.argmax(dim=-1),
|
81 |
+
]
|
82 |
+
|
83 |
+
if not return_dict:
|
84 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
85 |
+
|
86 |
+
return BaseModelOutputWithPooling(
|
87 |
+
last_hidden_state=last_hidden_state,
|
88 |
+
pooler_output=pooled_output,
|
89 |
+
hidden_states=encoder_outputs.hidden_states,
|
90 |
+
attentions=encoder_outputs.attentions,
|
91 |
+
)
|
arc2face/utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
@torch.no_grad()
|
5 |
+
def project_face_embs(pipeline, face_embs):
|
6 |
+
|
7 |
+
'''
|
8 |
+
face_embs: (N, 512) normalized ArcFace embeddings
|
9 |
+
'''
|
10 |
+
|
11 |
+
arcface_token_id = pipeline.tokenizer.encode("id", add_special_tokens=False)[0]
|
12 |
+
|
13 |
+
input_ids = pipeline.tokenizer(
|
14 |
+
"photo of a id person",
|
15 |
+
truncation=True,
|
16 |
+
padding="max_length",
|
17 |
+
max_length=pipeline.tokenizer.model_max_length,
|
18 |
+
return_tensors="pt",
|
19 |
+
).input_ids.to(pipeline.device)
|
20 |
+
|
21 |
+
face_embs_padded = F.pad(face_embs, (0, pipeline.text_encoder.config.hidden_size-512), "constant", 0)
|
22 |
+
token_embs = pipeline.text_encoder(input_ids=input_ids.repeat(len(face_embs), 1), return_token_embs=True)
|
23 |
+
token_embs[input_ids==arcface_token_id] = face_embs_padded
|
24 |
+
|
25 |
+
prompt_embeds = pipeline.text_encoder(
|
26 |
+
input_ids=input_ids,
|
27 |
+
input_token_embs=token_embs
|
28 |
+
)[0]
|
29 |
+
|
30 |
+
return prompt_embeds
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy<1.24.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|
4 |
+
diffusers==0.22.0
|
5 |
+
transformers==4.34.1
|
6 |
+
accelerate
|
7 |
+
insightface
|
8 |
+
onnxruntime-gpu
|
9 |
+
gradio
|