Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional | |
from einops import rearrange | |
class InflatedConv3d(nn.Conv2d): | |
def forward(self, x): | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class InflatedGroupNorm(nn.GroupNorm): | |
def forward(self, x): | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class Upsample3D(nn.Module): | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
raise NotImplementedError | |
elif use_conv: | |
self.conv = InflatedConv3d( | |
self.channels, self.out_channels, 3, padding=1) | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
raise NotImplementedError | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=[ | |
1.0, 2.0, 2.0], mode="nearest") | |
else: | |
hidden_states = F.interpolate( | |
hidden_states, size=output_size, mode="nearest") | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# if self.use_conv: | |
# if self.name == "conv": | |
# hidden_states = self.conv(hidden_states) | |
# else: | |
# hidden_states = self.Conv2d_0(hidden_states) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class Downsample3D(nn.Module): | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
self.conv = InflatedConv3d( | |
self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
raise NotImplementedError | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
raise NotImplementedError | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
use_inflated_groupnorm=None, | |
use_temporal_conv=False, | |
use_temporal_mixer=False, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.output_scale_factor = output_scale_factor | |
self.use_temporal_mixer = use_temporal_mixer | |
if use_temporal_mixer: | |
self.temporal_mixer = AlphaBlender(0.3, "learned", None) | |
if groups_out is None: | |
groups_out = groups | |
assert use_inflated_groupnorm != None | |
if use_inflated_groupnorm: | |
self.norm1 = InflatedGroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
else: | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
if use_temporal_conv: | |
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=( | |
3, 1, 1), stride=1, padding=(1, 0, 0)) | |
else: | |
self.conv1 = InflatedConv3d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
time_emb_proj_out_channels = out_channels | |
elif self.time_embedding_norm == "scale_shift": | |
time_emb_proj_out_channels = out_channels * 2 | |
else: | |
raise ValueError( | |
f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
self.time_emb_proj = torch.nn.Linear( | |
temb_channels, time_emb_proj_out_channels) | |
else: | |
self.time_emb_proj = None | |
if use_inflated_groupnorm: | |
self.norm2 = InflatedGroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
else: | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
if use_temporal_conv: | |
self.conv2 = nn.Conv3d(in_channels, out_channels, kernel_size=( | |
3, 1, 1), stride=1, padding=(1, 0, 0)) | |
else: | |
self.conv2 = InflatedConv3d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = InflatedConv3d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, input_tensor, temb): | |
if self.use_temporal_mixer: | |
residual = input_tensor | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[ | |
:, :, None, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / \ | |
self.output_scale_factor | |
if self.use_temporal_mixer: | |
output_tensor = self.temporal_mixer(residual, output_tensor, None) | |
# return residual + 0.0 * self.temporal_mixer(residual, output_tensor, None) | |
return output_tensor | |
class Mish(torch.nn.Module): | |
def forward(self, hidden_states): | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |
class AlphaBlender(nn.Module): | |
strategies = ["learned", "fixed", "learned_with_images"] | |
def __init__( | |
self, | |
alpha: float, | |
merge_strategy: str = "learned_with_images", | |
rearrange_pattern: str = "b t -> (b t) 1 1", | |
): | |
super().__init__() | |
self.merge_strategy = merge_strategy | |
self.rearrange_pattern = rearrange_pattern | |
self.scaler = 10. | |
assert ( | |
merge_strategy in self.strategies | |
), f"merge_strategy needs to be in {self.strategies}" | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif ( | |
self.merge_strategy == "learned" | |
or self.merge_strategy == "learned_with_images" | |
): | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: | |
if self.merge_strategy == "fixed": | |
alpha = self.mix_factor | |
elif self.merge_strategy == "learned": | |
alpha = torch.sigmoid(self.mix_factor*self.scaler) | |
elif self.merge_strategy == "learned_with_images": | |
assert image_only_indicator is not None, "need image_only_indicator ..." | |
alpha = torch.where( | |
image_only_indicator.bool(), | |
torch.ones(1, 1, device=image_only_indicator.device), | |
rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), | |
) | |
alpha = rearrange(alpha, self.rearrange_pattern) | |
else: | |
raise NotImplementedError | |
return alpha | |
def forward( | |
self, | |
x_spatial: torch.Tensor, | |
x_temporal: torch.Tensor, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
alpha = self.get_alpha(image_only_indicator) | |
x = ( | |
alpha.to(x_spatial.dtype) * x_spatial | |
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal | |
) | |
return x | |