|
import os |
|
import glob |
|
import tqdm |
|
import json |
|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import face_alignment |
|
from face_tracking.util import euler2rot |
|
|
|
|
|
def extract_audio(path, out_path, sample_rate=16000): |
|
|
|
print(f'[INFO] ===== extract audio from {path} to {out_path} =====') |
|
cmd = f'ffmpeg -i {path} -f wav -ar {sample_rate} {out_path}' |
|
os.system(cmd) |
|
print(f'[INFO] ===== extracted audio =====') |
|
|
|
def extract_audio_features(path, mode='ave'): |
|
|
|
print(f'[INFO] ===== extract audio labels for {path} =====') |
|
if mode == 'ave': |
|
print(f'AVE has been integrated into the training code, no need to extract audio features') |
|
elif mode == "deepspeech": |
|
cmd = f'python data_utils/deepspeech_features/extract_ds_features.py --input {path}' |
|
os.system(cmd) |
|
elif mode == 'hubert': |
|
cmd = f'python data_utils/hubert.py --wav {path}' |
|
os.system(cmd) |
|
print(f'[INFO] ===== extracted audio labels =====') |
|
|
|
|
|
def extract_images(path, out_path, fps=25): |
|
|
|
print(f'[INFO] ===== extract images from {path} to {out_path} =====') |
|
cmd = f'ffmpeg -i {path} -vf fps={fps} -qmin 1 -q:v 1 -start_number 0 {os.path.join(out_path, "%d.jpg")}' |
|
os.system(cmd) |
|
print(f'[INFO] ===== extracted images =====') |
|
|
|
|
|
def extract_semantics(ori_imgs_dir, parsing_dir): |
|
|
|
print(f'[INFO] ===== extract semantics from {ori_imgs_dir} to {parsing_dir} =====') |
|
cmd = f'python data_utils/face_parsing/test.py --respath={parsing_dir} --imgpath={ori_imgs_dir}' |
|
os.system(cmd) |
|
print(f'[INFO] ===== extracted semantics =====') |
|
|
|
|
|
def extract_landmarks(ori_imgs_dir): |
|
|
|
print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====') |
|
try: |
|
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) |
|
except: |
|
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) |
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
for image_path in tqdm.tqdm(image_paths): |
|
input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) |
|
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) |
|
preds = fa.get_landmarks(input) |
|
if len(preds) > 0: |
|
lands = preds[0].reshape(-1, 2)[:,:2] |
|
np.savetxt(image_path.replace('jpg', 'lms'), lands, '%f') |
|
del fa |
|
print(f'[INFO] ===== extracted face landmarks =====') |
|
|
|
|
|
def extract_background(base_dir, ori_imgs_dir): |
|
|
|
print(f'[INFO] ===== extract background image from {ori_imgs_dir} =====') |
|
|
|
from sklearn.neighbors import NearestNeighbors |
|
|
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
|
|
image_paths = image_paths[::20] |
|
|
|
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) |
|
h, w = tmp_image.shape[:2] |
|
|
|
|
|
all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() |
|
distss = [] |
|
for image_path in tqdm.tqdm(image_paths): |
|
parse_img = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) |
|
bg = (parse_img[..., 0] == 255) & (parse_img[..., 1] == 255) & (parse_img[..., 2] == 255) |
|
fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) |
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) |
|
dists, _ = nbrs.kneighbors(all_xys) |
|
distss.append(dists) |
|
|
|
distss = np.stack(distss) |
|
max_dist = np.max(distss, 0) |
|
max_id = np.argmax(distss, 0) |
|
|
|
bc_pixs = max_dist > 5 |
|
bc_pixs_id = np.nonzero(bc_pixs) |
|
bc_ids = max_id[bc_pixs] |
|
|
|
imgs = [] |
|
num_pixs = distss.shape[1] |
|
for image_path in image_paths: |
|
img = cv2.imread(image_path) |
|
imgs.append(img) |
|
imgs = np.stack(imgs).reshape(-1, num_pixs, 3) |
|
|
|
bc_img = np.zeros((h*w, 3), dtype=np.uint8) |
|
bc_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] |
|
bc_img = bc_img.reshape(h, w, 3) |
|
|
|
max_dist = max_dist.reshape(h, w) |
|
bc_pixs = max_dist > 5 |
|
bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose() |
|
fg_xys = np.stack(np.nonzero(bc_pixs)).transpose() |
|
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) |
|
distances, indices = nbrs.kneighbors(bg_xys) |
|
bg_fg_xys = fg_xys[indices[:, 0]] |
|
bc_img[bg_xys[:, 0], bg_xys[:, 1], :] = bc_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :] |
|
|
|
cv2.imwrite(os.path.join(base_dir, 'bc.jpg'), bc_img) |
|
|
|
print(f'[INFO] ===== extracted background image =====') |
|
|
|
|
|
def extract_torso_and_gt(base_dir, ori_imgs_dir): |
|
|
|
print(f'[INFO] ===== extract torso and gt images for {base_dir} =====') |
|
|
|
from scipy.ndimage import binary_erosion, binary_dilation |
|
|
|
|
|
bg_image = cv2.imread(os.path.join(base_dir, 'bc.jpg'), cv2.IMREAD_UNCHANGED) |
|
|
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
|
|
for image_path in tqdm.tqdm(image_paths): |
|
|
|
ori_image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) |
|
|
|
|
|
seg = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) |
|
mask_img = np.zeros_like(seg) |
|
head_part = (seg[..., 0] == 255) & (seg[..., 1] == 0) & (seg[..., 2] == 0) |
|
neck_part = (seg[..., 0] == 0) & (seg[..., 1] == 255) & (seg[..., 2] == 0) |
|
torso_part = (seg[..., 0] == 0) & (seg[..., 1] == 0) & (seg[..., 2] == 255) |
|
bg_part = (seg[..., 0] == 255) & (seg[..., 1] == 255) & (seg[..., 2] == 255) |
|
mask_img[head_part, :] = 255 |
|
cv2.imwrite(image_path.replace('ori_imgs', 'face_mask').replace('.jpg', '.png'), mask_img) |
|
|
|
gt_image = ori_image.copy() |
|
gt_image[bg_part] = bg_image[bg_part] |
|
cv2.imwrite(image_path.replace('ori_imgs', 'gt_imgs'), gt_image) |
|
|
|
|
|
torso_image = gt_image.copy() |
|
torso_image[head_part] = bg_image[head_part] |
|
torso_alpha = 255 * np.ones((gt_image.shape[0], gt_image.shape[1], 1), dtype=np.uint8) |
|
|
|
|
|
L = 8 + 1 |
|
torso_coords = np.stack(np.nonzero(torso_part), axis=-1) |
|
|
|
|
|
inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1])) |
|
torso_coords = torso_coords[inds] |
|
|
|
u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True) |
|
top_torso_coords = torso_coords[uid] |
|
|
|
top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) |
|
mask = head_part[tuple(top_torso_coords_up.T)] |
|
if mask.any(): |
|
top_torso_coords = top_torso_coords[mask] |
|
|
|
top_torso_colors = gt_image[tuple(top_torso_coords.T)] |
|
|
|
inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) |
|
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] |
|
inpaint_torso_coords += inpaint_offsets |
|
inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) |
|
inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) |
|
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) |
|
inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) |
|
|
|
torso_image[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors |
|
|
|
inpaint_torso_mask = np.zeros_like(torso_image[..., 0]).astype(bool) |
|
inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True |
|
else: |
|
inpaint_torso_mask = None |
|
|
|
push_down = 4 |
|
L = 48 + push_down + 1 |
|
|
|
neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3) |
|
|
|
neck_coords = np.stack(np.nonzero(neck_part), axis=-1) |
|
inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1])) |
|
neck_coords = neck_coords[inds] |
|
u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True) |
|
top_neck_coords = neck_coords[uid] |
|
top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0]) |
|
mask = head_part[tuple(top_neck_coords_up.T)] |
|
|
|
top_neck_coords = top_neck_coords[mask] |
|
offset_down = np.minimum(ucnt[mask] - 1, push_down) |
|
top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1) |
|
|
|
top_neck_colors = gt_image[tuple(top_neck_coords.T)] |
|
|
|
|
|
inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) |
|
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] |
|
inpaint_neck_coords += inpaint_offsets |
|
inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) |
|
|
|
|
|
neck_avg_color = np.mean(gt_image[neck_part], axis=0) |
|
inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) |
|
alpha_values = np.linspace(1, 0, L).reshape(L, 1, 1) |
|
inpaint_neck_colors = inpaint_neck_colors * alpha_values + neck_avg_color * (1 - alpha_values) |
|
inpaint_neck_colors = inpaint_neck_colors.reshape(-1, 3) |
|
torso_image[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors |
|
|
|
inpaint_mask = np.zeros_like(torso_image[..., 0]).astype(bool) |
|
inpaint_mask[tuple(inpaint_neck_coords.T)] = True |
|
|
|
blur_img = torso_image.copy() |
|
blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT) |
|
|
|
torso_image[inpaint_mask] = blur_img[inpaint_mask] |
|
|
|
|
|
mask = (neck_part | torso_part | inpaint_mask) |
|
if inpaint_torso_mask is not None: |
|
mask = mask | inpaint_torso_mask |
|
torso_image[~mask] = 0 |
|
torso_alpha[~mask] = 0 |
|
|
|
cv2.imwrite(image_path.replace('ori_imgs', 'torso_imgs').replace('.jpg', '.png'), np.concatenate([torso_image, torso_alpha], axis=-1)) |
|
print(f'[INFO] ===== extracted torso and gt images =====') |
|
|
|
|
|
def face_tracking(ori_imgs_dir): |
|
|
|
print(f'[INFO] ===== perform face tracking =====') |
|
|
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
|
|
|
|
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) |
|
h, w = tmp_image.shape[:2] |
|
|
|
cmd = f'python data_utils/face_tracking/face_tracker.py --path={ori_imgs_dir} --img_h={h} --img_w={w} --frame_num={len(image_paths)}' |
|
|
|
os.system(cmd) |
|
|
|
print(f'[INFO] ===== finished face tracking =====') |
|
|
|
|
|
def extract_flow(base_dir,ori_imgs_dir,mask_dir, flow_dir): |
|
print(f'[INFO] ===== extract flow =====') |
|
torch.cuda.empty_cache() |
|
ref_id = 2 |
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) |
|
h, w = tmp_image.shape[:2] |
|
valid_img_ids = [] |
|
for i in range(100000): |
|
if os.path.isfile(os.path.join(ori_imgs_dir, '{:d}.lms'.format(i))): |
|
valid_img_ids.append(i) |
|
valid_img_num = len(valid_img_ids) |
|
with open(os.path.join(base_dir, 'flow_list.txt'), 'w') as file: |
|
for i in range(0, valid_img_num): |
|
file.write(base_dir + '/ori_imgs/' + '{:d}.jpg '.format(ref_id) + |
|
base_dir + '/face_mask/' + '{:d}.png '.format(ref_id) + |
|
base_dir + '/ori_imgs/' + '{:d}.jpg '.format(i) + |
|
base_dir + '/face_mask/' + '{:d}.png\n'.format(i)) |
|
file.close() |
|
ext_flow_cmd = 'python data_utils/UNFaceFlow/test_flow.py --datapath=' + base_dir + '/flow_list.txt ' + \ |
|
'--savepath=' + base_dir + '/flow_result' + \ |
|
' --width=' + str(w) + ' --height=' + str(h) |
|
os.system(ext_flow_cmd) |
|
face_img = cv2.imread(os.path.join(ori_imgs_dir, '{:d}.jpg'.format(ref_id))) |
|
face_img_mask = cv2.imread(os.path.join(mask_dir, '{:d}.png'.format(ref_id))) |
|
|
|
rigid_mask = face_img_mask[..., 0] > 250 |
|
rigid_num = np.sum(rigid_mask) |
|
flow_frame_num = 2500 |
|
flow_frame_num = min(flow_frame_num, valid_img_num) |
|
rigid_flow = np.zeros((flow_frame_num, 2, rigid_num), np.float32) |
|
for i in range(flow_frame_num): |
|
flow = np.load(os.path.join(flow_dir, '{:d}_{:d}.npy'.format(ref_id, valid_img_ids[i]))) |
|
rigid_flow[i] = flow[:, rigid_mask] |
|
rigid_flow = rigid_flow.transpose((2, 1, 0)) |
|
rigid_flow = torch.as_tensor(rigid_flow).cuda() |
|
lap_kernel = torch.Tensor( |
|
(-0.5, 1.0, -0.5)).unsqueeze(0).unsqueeze(0).float().cuda() |
|
flow_lap = F.conv1d( |
|
rigid_flow.reshape(-1, 1, rigid_flow.shape[-1]), lap_kernel) |
|
flow_lap = flow_lap.view(rigid_flow.shape[0], 2, -1) |
|
flow_lap = torch.norm(flow_lap, dim=1) |
|
valid_frame = torch.mean(flow_lap, dim=0) < (torch.mean(flow_lap) * 3) |
|
flow_lap = flow_lap[:, valid_frame] |
|
rigid_flow_mean = torch.mean(flow_lap, dim=1) |
|
rigid_flow_show = (rigid_flow_mean - torch.min(rigid_flow_mean)) / \ |
|
(torch.max(rigid_flow_mean) - torch.min(rigid_flow_mean)) * 255 |
|
rigid_flow_show = rigid_flow_show.byte().cpu().numpy() |
|
rigid_flow_img = np.zeros((h, w, 1), dtype=np.uint8) |
|
rigid_flow_img[...] = 255 |
|
rigid_flow_img[rigid_mask, 0] = rigid_flow_show |
|
cv2.imwrite(os.path.join(base_dir, 'rigid_flow.jpg'), rigid_flow_img) |
|
win_size, d_size = 5, 5 |
|
sel_xys = np.zeros((h, w), dtype=np.int32) |
|
xys = [] |
|
for y in range(0, h - win_size, win_size): |
|
for x in range(0, w - win_size, win_size): |
|
min_v = int(40) |
|
id_x = -1 |
|
id_y = -1 |
|
for dy in range(0, win_size): |
|
for dx in range(0, win_size): |
|
if rigid_flow_img[y + dy, x + dx, 0] < min_v: |
|
min_v = rigid_flow_img[y + dy, x + dx, 0] |
|
id_x = x + dx |
|
id_y = y + dy |
|
if id_x >= 0: |
|
if (np.sum(sel_xys[id_y - d_size:id_y + d_size + 1, id_x - d_size:id_x + d_size + 1]) == 0): |
|
cv2.circle(face_img, (id_x, id_y), 1, (255, 0, 0)) |
|
xys.append(np.array((id_x, id_y), np.int32)) |
|
sel_xys[id_y, id_x] = 1 |
|
|
|
cv2.imwrite(os.path.join(base_dir, 'keypts.jpg'), face_img) |
|
np.savetxt(os.path.join(base_dir, 'keypoints.txt'), xys, '%d') |
|
key_xys = np.loadtxt(os.path.join(base_dir, 'keypoints.txt'), np.int32) |
|
track_xys = np.zeros((valid_img_num, key_xys.shape[0], 2), dtype=np.float32) |
|
track_dir = os.path.join(base_dir,'flow_result') |
|
track_paths = sorted(glob.glob(os.path.join(track_dir, '*.npy')), key=lambda x: int(x.split('/')[-1].split('.')[0])) |
|
|
|
for i, path in enumerate(track_paths): |
|
|
|
flow = np.load(path) |
|
for j in range(key_xys.shape[0]): |
|
x = key_xys[j, 0] |
|
y = key_xys[j, 1] |
|
track_xys[i, j, 0] = x + flow[0, y, x] |
|
track_xys[i, j, 1] = y + flow[1, y, x] |
|
np.save(os.path.join(base_dir, 'track_xys.npy'), track_xys) |
|
|
|
pose_opt_cmd = 'python data_utils/face_tracking/bundle_adjustment.py --path=' + base_dir + ' --img_h=' + \ |
|
str(h) + ' --img_w=' + str(w) |
|
os.system(pose_opt_cmd) |
|
|
|
def extract_blendshape(base_dir): |
|
print(f'[INFO] ===== extract blendshape =====') |
|
blendshape_cmd = 'python data_utils/blendshape_capture/main.py --path=' + base_dir |
|
os.system(blendshape_cmd) |
|
|
|
|
|
def save_transforms(base_dir, ori_imgs_dir): |
|
print(f'[INFO] ===== save transforms =====') |
|
|
|
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) |
|
|
|
|
|
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) |
|
h, w = tmp_image.shape[:2] |
|
|
|
params_dict = torch.load(os.path.join(base_dir, 'bundle_adjustment.pt')) |
|
focal_len = params_dict['focal'] |
|
euler_angle = params_dict['euler'] |
|
trans = params_dict['trans'] |
|
valid_num = euler_angle.shape[0] |
|
|
|
train_val_split = int(valid_num * 10 / 11) |
|
train_ids = torch.arange(0, train_val_split) |
|
val_ids = torch.arange(train_val_split, valid_num) |
|
|
|
rot = euler2rot(euler_angle) |
|
rot_inv = rot.permute(0, 2, 1) |
|
trans_inv = -torch.bmm(rot_inv, trans.unsqueeze(2)) |
|
|
|
pose = torch.eye(4, dtype=torch.float32) |
|
save_ids = ['train', 'val'] |
|
train_val_ids = [train_ids, val_ids] |
|
mean_z = -float(torch.mean(trans[:, 2]).item()) |
|
|
|
for split in range(2): |
|
transform_dict = dict() |
|
transform_dict['focal_len'] = float(focal_len[0]) |
|
transform_dict['cx'] = float(w/2.0) |
|
transform_dict['cy'] = float(h/2.0) |
|
transform_dict['frames'] = [] |
|
ids = train_val_ids[split] |
|
save_id = save_ids[split] |
|
|
|
for i in ids: |
|
i = i.item() |
|
frame_dict = dict() |
|
frame_dict['img_id'] = i |
|
frame_dict['aud_id'] = i |
|
|
|
pose[:3, :3] = rot_inv[i] |
|
pose[:3, 3] = trans_inv[i, :, 0] |
|
|
|
frame_dict['transform_matrix'] = pose.numpy().tolist() |
|
|
|
transform_dict['frames'].append(frame_dict) |
|
|
|
with open(os.path.join(base_dir, 'transforms_' + save_id + '.json'), 'w') as fp: |
|
json.dump(transform_dict, fp, indent=2, separators=(',', ': ')) |
|
|
|
print(f'[INFO] ===== finished saving transforms =====') |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('path', type=str, help="path to video file") |
|
parser.add_argument('--task', type=int, default=-1, help="-1 means all") |
|
parser.add_argument('--asr', type=str, default='ave', help="ave, hubert or deepspeech") |
|
|
|
|
|
opt = parser.parse_args() |
|
|
|
base_dir = os.path.dirname(opt.path) |
|
|
|
wav_path = os.path.join(base_dir, 'aud.wav') |
|
ori_imgs_dir = os.path.join(base_dir, 'ori_imgs') |
|
parsing_dir = os.path.join(base_dir, 'parsing') |
|
gt_imgs_dir = os.path.join(base_dir, 'gt_imgs') |
|
torso_imgs_dir = os.path.join(base_dir, 'torso_imgs') |
|
mask_imgs_dir = os.path.join(base_dir, 'face_mask') |
|
flow_dir = os.path.join(base_dir, 'flow_result') |
|
|
|
|
|
os.makedirs(ori_imgs_dir, exist_ok=True) |
|
os.makedirs(parsing_dir, exist_ok=True) |
|
os.makedirs(gt_imgs_dir, exist_ok=True) |
|
os.makedirs(torso_imgs_dir, exist_ok=True) |
|
os.makedirs(mask_imgs_dir, exist_ok=True) |
|
os.makedirs(flow_dir, exist_ok=True) |
|
|
|
|
|
|
|
if opt.task == -1 or opt.task == 1: |
|
extract_audio(opt.path, wav_path) |
|
extract_audio_features(wav_path, mode=opt.asr) |
|
|
|
|
|
if opt.task == -1 or opt.task == 2: |
|
extract_images(opt.path, ori_imgs_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 3: |
|
extract_semantics(ori_imgs_dir, parsing_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 4: |
|
extract_background(base_dir, ori_imgs_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 5: |
|
extract_torso_and_gt(base_dir, ori_imgs_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 6: |
|
extract_landmarks(ori_imgs_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 7: |
|
face_tracking(ori_imgs_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 8: |
|
extract_flow(base_dir, ori_imgs_dir, mask_imgs_dir, flow_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 9: |
|
extract_blendshape(base_dir) |
|
|
|
|
|
if opt.task == -1 or opt.task == 10: |
|
save_transforms(base_dir, ori_imgs_dir) |
|
|
|
|