Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,102 @@
|
|
1 |
-
|
|
|
2 |
from minivectordb.embedding_model import EmbeddingModel
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
6 |
-
import
|
7 |
-
import concurrent.futures
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
langdetect_model = fasttext.load_model('lid.176.ftz')
|
12 |
-
embedding_model = EmbeddingModel(onnx_model_cpu_core_count=
|
13 |
-
|
14 |
-
|
15 |
tokenizer = tiktoken.encoding_for_model("gpt-4")
|
16 |
|
17 |
def count_tokens_tiktoken(text):
|
18 |
return len(tokenizer.encode(text))
|
19 |
|
20 |
-
def
|
21 |
detected_lang = langdetect_model.predict(text.replace('\n', ' '), k=1)[0][0]
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
semantic_db = VectorDatabase()
|
52 |
-
ids = [i for i in range(len(non_stopword_words))]
|
53 |
-
metadata_dicts = [{"w": word} for word in non_stopword_words]
|
54 |
-
semantic_db.store_embeddings_batch(ids, non_stopword_embeddings, metadata_dicts)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
|
62 |
-
#
|
63 |
-
|
|
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
high_priority_count = max(high_priority_count, 0) # Ensure it's not negative
|
68 |
-
high_priority_indices = ordered_indices[:high_priority_count]
|
69 |
|
70 |
-
|
71 |
-
for
|
72 |
-
|
73 |
-
remaining_remove = num_remove
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
if remaining_remove > 0:
|
84 |
-
lower_priority_indices = ordered_indices[high_priority_count:]
|
85 |
-
num_non_stop = min(remaining_remove, len(lower_priority_indices)) # Ensure we don't sample more than available
|
86 |
-
prioritized_non_stop_indices = random.sample(lower_priority_indices, num_non_stop) if num_non_stop > 0 else []
|
87 |
else:
|
88 |
-
|
89 |
-
|
90 |
-
stop_comb = random.sample(stopword_indices, num_stop) if num_stop > 0 else []
|
91 |
-
combination = set(stop_comb + prioritized_non_stop_indices)
|
92 |
-
|
93 |
-
new_string = [word for i, word in enumerate(words) if i not in combination or i in high_priority_indices]
|
94 |
-
combinations.append(' '.join(new_string))
|
95 |
-
|
96 |
-
return list(set(combinations))
|
97 |
-
|
98 |
-
@lru_cache(maxsize=50000)
|
99 |
-
def extract_embeddings(text):
|
100 |
-
return embedding_model.extract_embeddings(text)
|
101 |
-
|
102 |
-
def extract_embeddings_batch(texts):
|
103 |
-
return [extract_embeddings(text) for text in texts]
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
word_count = len(input_text.split())
|
109 |
|
110 |
-
thresholds = [(1500, 80), (1000, 90), (700, 110), (500, 130), (250, 160)]
|
111 |
-
for threshold, value in thresholds:
|
112 |
-
if word_count > threshold:
|
113 |
-
num_samples = value
|
114 |
-
break
|
115 |
-
|
116 |
-
semantic_embeddings = extract_embeddings(input_text)
|
117 |
-
text_lang = detect_language_en_pt(input_text)
|
118 |
-
stopwords = en_stop_words if text_lang == 'en' else pt_stop_words
|
119 |
-
text_combinations = generate_combinations(input_text, word_reduction_factor, stopwords, semantic_embeddings, num_samples=num_samples)
|
120 |
-
|
121 |
-
n = int(num_samples / cpu_count())
|
122 |
-
# Aggregate text_combinations into blocks of "n"
|
123 |
-
text_combinations_chunks = [text_combinations[i:i + n] for i in range(0, len(text_combinations), n)]
|
124 |
-
|
125 |
-
# Calculate the embeddings for each combination
|
126 |
-
combinations_embeddings = []
|
127 |
-
with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as executor:
|
128 |
-
for embeddings in executor.map(extract_embeddings_batch, text_combinations_chunks):
|
129 |
-
combinations_embeddings.extend(embeddings)
|
130 |
-
|
131 |
-
semantic_db = VectorDatabase()
|
132 |
-
unique_ids = [ i for i in range(len(text_combinations)) ]
|
133 |
-
metadata_dicts = [ {"text": text} for text in text_combinations ]
|
134 |
-
semantic_db.store_embeddings_batch(unique_ids, combinations_embeddings, metadata_dicts)
|
135 |
-
|
136 |
-
_, _, result = semantic_db.find_most_similar(semantic_embeddings, k=1)
|
137 |
-
best_compressed_sentence = result[0]['text']
|
138 |
-
return best_compressed_sentence
|
139 |
|
140 |
async def predict(text, word_reduction_factor):
|
141 |
if len(text.split()) > 700:
|
142 |
return "Text is too long for this demo. Please provide a text with less than 700 words."
|
143 |
|
144 |
-
compressed =
|
145 |
perc_reduction = round(100 - (count_tokens_tiktoken(compressed) / count_tokens_tiktoken(text)) * 100, 2)
|
146 |
|
147 |
return f"{compressed}\n\nToken Reduction: {perc_reduction}%"
|
@@ -162,7 +117,7 @@ reduction_factor = gr.Slider(
|
|
162 |
value=0.5,
|
163 |
step=0.05,
|
164 |
interactive=True,
|
165 |
-
label="
|
166 |
)
|
167 |
# Create the gradio interface
|
168 |
gr.Interface(
|
|
|
1 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
2 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
3 |
from minivectordb.embedding_model import EmbeddingModel
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import tiktoken, nltk, numpy as np, fasttext, pickle
|
6 |
+
from nltk.tokenize import sent_tokenize
|
7 |
+
import gradio as gr
|
|
|
8 |
|
9 |
+
nltk.download('punkt')
|
10 |
+
nltk.download('stopwords')
|
11 |
|
12 |
langdetect_model = fasttext.load_model('lid.176.ftz')
|
13 |
+
embedding_model = EmbeddingModel(onnx_model_cpu_core_count=2)
|
14 |
+
english_stopwords = pickle.load(open("en_stopwords.pkl", "rb"))
|
15 |
+
portuguese_stopwords = pickle.load(open("pt_stopwords.pkl", "rb"))
|
16 |
tokenizer = tiktoken.encoding_for_model("gpt-4")
|
17 |
|
18 |
def count_tokens_tiktoken(text):
|
19 |
return len(tokenizer.encode(text))
|
20 |
|
21 |
+
def detect_language(text):
|
22 |
detected_lang = langdetect_model.predict(text.replace('\n', ' '), k=1)[0][0]
|
23 |
+
return 'pt' if (str(detected_lang) == '__label__pt' or str(detected_lang) == 'portuguese') else 'en'
|
24 |
+
|
25 |
+
def semantic_compress_text(full_text, compression_rate=0.7, num_topics=5):
|
26 |
+
def calculate_similarity(embed1, embed2):
|
27 |
+
return cosine_similarity([embed1], [embed2])[0][0]
|
28 |
+
|
29 |
+
def create_lda_model(texts, stopwords):
|
30 |
+
vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words=stopwords)
|
31 |
+
doc_term_matrix = vectorizer.fit_transform(texts)
|
32 |
+
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
|
33 |
+
lda.fit(doc_term_matrix)
|
34 |
+
return lda, vectorizer
|
35 |
+
|
36 |
+
def get_topic_distribution(text, lda, vectorizer):
|
37 |
+
vec = vectorizer.transform([text])
|
38 |
+
return lda.transform(vec)[0]
|
39 |
+
|
40 |
+
def sentence_importance(sentence, doc_embedding, lda_model, vectorizer, stopwords):
|
41 |
+
sentence_embedding = embedding_model.extract_embeddings(sentence)
|
42 |
+
semantic_similarity = calculate_similarity(doc_embedding, sentence_embedding)
|
43 |
+
|
44 |
+
topic_dist = get_topic_distribution(sentence, lda_model, vectorizer)
|
45 |
+
topic_importance = np.max(topic_dist)
|
46 |
+
|
47 |
+
# Calculate lexical diversity
|
48 |
+
words = sentence.split()
|
49 |
+
unique_words = set([word.lower() for word in words if word.lower() not in stopwords])
|
50 |
+
lexical_diversity = len(unique_words) / len(words) if words else 0
|
51 |
+
|
52 |
+
# Combine factors (you can adjust weights as needed)
|
53 |
+
importance = (0.4 * semantic_similarity) + (0.4 * topic_importance) + (0.2 * lexical_diversity)
|
54 |
+
return importance
|
55 |
|
56 |
+
# Split the text into sentences
|
57 |
+
sentences = sent_tokenize(full_text)
|
58 |
|
59 |
+
text_lang = detect_language(full_text)
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# Create LDA model
|
62 |
+
lda_model, vectorizer = create_lda_model(sentences, portuguese_stopwords if text_lang == 'pt' else english_stopwords)
|
63 |
|
64 |
+
# Get document-level embedding
|
65 |
+
doc_embedding = embedding_model.extract_embeddings(full_text)
|
66 |
|
67 |
+
# Calculate importance for each sentence
|
68 |
+
sentence_scores = [(sentence, sentence_importance(sentence, doc_embedding, lda_model, vectorizer, portuguese_stopwords if text_lang == 'pt' else english_stopwords))
|
69 |
+
for sentence in sentences]
|
70 |
|
71 |
+
# Sort sentences by importance
|
72 |
+
sorted_sentences = sorted(sentence_scores, key=lambda x: x[1], reverse=True)
|
|
|
|
|
73 |
|
74 |
+
# Determine how many words to keep
|
75 |
+
total_words = sum(len(sentence.split()) for sentence in sentences)
|
76 |
+
target_words = int(total_words * compression_rate)
|
|
|
77 |
|
78 |
+
# Reconstruct the compressed text
|
79 |
+
compressed_text = []
|
80 |
+
current_words = 0
|
81 |
+
for sentence, _ in sorted_sentences:
|
82 |
+
sentence_words = len(sentence.split())
|
83 |
+
if current_words + sentence_words <= target_words:
|
84 |
+
compressed_text.append(sentence)
|
85 |
+
current_words += sentence_words
|
|
|
|
|
|
|
|
|
86 |
else:
|
87 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Reorder sentences to maintain original flow
|
90 |
+
compressed_text.sort(key=lambda x: sentences.index(x))
|
91 |
|
92 |
+
return ' '.join(compressed_text)
|
|
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
async def predict(text, word_reduction_factor):
|
96 |
if len(text.split()) > 700:
|
97 |
return "Text is too long for this demo. Please provide a text with less than 700 words."
|
98 |
|
99 |
+
compressed = semantic_compress_text(text, word_reduction_factor = 1 - word_reduction_factor)
|
100 |
perc_reduction = round(100 - (count_tokens_tiktoken(compressed) / count_tokens_tiktoken(text)) * 100, 2)
|
101 |
|
102 |
return f"{compressed}\n\nToken Reduction: {perc_reduction}%"
|
|
|
117 |
value=0.5,
|
118 |
step=0.05,
|
119 |
interactive=True,
|
120 |
+
label="Reduction Factor"
|
121 |
)
|
122 |
# Create the gradio interface
|
123 |
gr.Interface(
|