Spaces:
Runtime error
Runtime error
import pickle | |
import pandas as pd | |
import sklearn | |
import numpy as np | |
import gradio as gr | |
import imblearn | |
from ml_demo_gradio_function import * | |
import tensorflow as tf | |
from tensorflow.keras.applications import imagenet_utils | |
from tensorflow.keras.utils import img_to_array | |
from tensorflow.keras.models import load_model | |
import cv2 | |
import pdfplumber | |
import re | |
from collections import namedtuple | |
#LOADING THE DATA | |
results = loading_data() | |
Xtrain = results["Xtrain"] | |
Ytrain = results["Ytrain"] | |
Xtest_encoded = results["Xtest_encoded"] | |
Ytest = results["Ytest"] | |
num_col_trans = results["num_col_trans"] | |
cat_col_trans = results["cat_col_trans"] | |
# POUR VGG16 | |
my_input = gr.inputs.Image(shape=(224,224)) | |
my_output = gr.Label(label="Resultat de la prédiction",num_top_classes=2) | |
output_valeur = gr.outputs.HTML(label="") | |
description = ( | |
"Cette page vous montre le résultat de la prédiction effectuée par le modèle VGG16. Le resultat présente si un patient est tumeureux ou pas du tout" | |
) | |
vgg16_interface = gr.Interface(Prediction_VGG16, my_input,description=description, theme="huggingface",outputs = [output_valeur,my_output]) | |
#--------------------------------------------------------------------------------------- | |
# POUR DIABETES FICHIER PDF | |
input_file_PDF = gr.File(label='PDF') | |
text_output2 = gr.Label(label="Resultat de la prédiction",num_top_classes=3) | |
df_ouput = gr.Dataframe(label="Caractéristique du patient", | |
headers=["HighBP","HighChol", "CholCheck", "BMI", "Smoker","Stroke","HeartDiseaseorAttack", | |
"PhysActivity", "Fruits", "Veggies","HvyAlcoholConsump","AnyHealthcare", "NoDocbcCost", "GenHlth", | |
"MentHlth", "PhysHlth", "DiffWalk", | |
"Sex", "Age", "Education","Income"], | |
row_count=1, | |
col_count=(21) | |
) | |
output_valeurs = gr.outputs.HTML(label="") | |
diabtes_PDF_interface = gr.Interface(get_data_inputPDF, inputs=input_file_PDF, | |
outputs=[df_ouput,output_valeurs,text_output2] | |
) | |
#--------------------------------------------------------------------------------------- | |
demo = gr.TabbedInterface([vgg16_interface, diabtes_PDF_interface], ["Détéction d'une tumeur", "(PDF) Diabétique, prédiabétique ou sain"]) | |
demo.launch() | |
if __name__ =="__main__": | |
demo.launch(share=True) |