zaoju-demo / app.py
cn91's picture
Update to 710M Character Model, add RTD
3ec9549
raw
history blame
7.59 kB
from transformers import pipeline, AutoTokenizer, ElectraForPreTraining
import pandas as pd
import numpy as np
import torch
import streamlit as st
from annotated_text import annotated_text
USE_GPU = True
if USE_GPU and torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device('cpu')
MODEL_NAME_CHINESE = "IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese"
RTD_MODEL_NAME_CHINESE = "hfl/chinese-electra-180g-large-discriminator"
WORD_PROBABILITY_THRESHOLD = 0.05
TOP_K_WORDS = 10
@st.cache_resource
def get_model_chinese():
return pipeline("fill-mask", MODEL_NAME_CHINESE, device = device)
@st.cache_resource
def get_rtd_tokenizer_chinese():
return AutoTokenizer.from_pretrained(RTD_MODEL_NAME_CHINESE)
@st.cache_resource
def get_rtd_model_chinese():
return ElectraForPreTraining.from_pretrained(RTD_MODEL_NAME_CHINESE)
@st.cache_resource
def get_wordlist_chinese():
df = pd.read_csv('wordlist_chinese_v2.csv')
wordlist = df[df.assess == True]
return wordlist['Chinese'].tolist()
@st.cache_resource
def get_allowed_words():
df = pd.read_csv('allowed_words.csv')
return set(list(df['word']))
def assess_chinese(word, sentence):
print("Assessing Chinese")
number_of_chars = len(word)
assert number_of_chars == 2
allowed_words = get_allowed_words()
if sentence.lower().find(word.lower()) == -1:
print('Sentence does not contain the word!')
return
text = sentence.replace(word.lower(), "[MASK]"*number_of_chars)
top_k_prediction = []
candidates = mask_filler_chinese(text, top_k=TOP_K_WORDS)[0]
for candidate in candidates:
temp_text = text.replace("[MASK]", candidate['token_str'], 1)
second_predictions = mask_filler_chinese(temp_text, top_k=5)
for prediction in second_predictions:
prediction['token_str'] = candidate['token_str'] + prediction['token_str']
prediction['score'] = candidate['score'] * prediction['score']
top_k_prediction.extend(second_predictions)
top_k_prediction = sorted(top_k_prediction, key = lambda x: x['score'], reverse = True)[:(TOP_K_WORDS*5)]
norm_factor = 0
for output in top_k_prediction:
if output['token_str'] not in allowed_words:
norm_factor += output['score']
top_k_prediction_new = []
for output in top_k_prediction:
if output['token_str'] in allowed_words:
output['score'] = output['score']/(1-min(0.5,norm_factor))
top_k_prediction_new.append(output)
print (f"NORM_FACTOR: {norm_factor}")
# Get target word prediction
temp_text = text
output1 = mask_filler_chinese(text, targets=word[0])[0][0]
temp_text = text.replace("[MASK]", word[0], 1)
output2 = mask_filler_chinese(temp_text, targets = word[1])[0]
output2['token_str'] = output1['token_str'] + output2['token_str']
output2['score'] = output1['score'] * output2['score']
target_word_prediction = output2
target_word_prediction['score'] = target_word_prediction['score'] / (1-min(0.5,norm_factor))
score = target_word_prediction['score']
# append the original word if its not found in the results
top_k_prediction_filtered = [output for output in top_k_prediction_new if \
output['token_str'] == word]
if len(top_k_prediction_filtered) == 0:
top_k_prediction_new.extend([target_word_prediction])
return top_k_prediction_new, score
def assess_sentence(word, sentence):
return assess_chinese(word, sentence)
def get_annotated_sentence(sentence, errors):
if len(errors) == 0:
return sentence
output = ["Input sentence: "]
wrong_char_indices = [e[0].item() for e in errors]
curr_ind = 0
for i in range(len(wrong_char_indices)):
output.append(sentence[curr_ind:wrong_char_indices[i]])
output.append((sentence[wrong_char_indices[i]], "", "#F8C8DC"))
# output.append((sentence[wrong_char_indices[i]], " ", "#ff4b4b"))
curr_ind = wrong_char_indices[i] + 1
output.append(sentence[curr_ind:])
print(output)
return output
def get_word_errors(word, sentence):
tokens = rtd_tokenizer_chinese(sentence, return_tensors = 'pt', return_offsets_mapping = True)
scores = rtd_model_chinese(**rtd_tokenizer_chinese(sentence, return_tensors = 'pt'))[0][0]
errors = []
for i in range(len(scores)):
if scores[i] > 0:
errors.append(tokens['offset_mapping'][0][i])
print(errors)
return errors
def get_chinese_word():
possible_words = get_wordlist_chinese()
word = np.random.choice(possible_words)
return word
def get_word():
return get_chinese_word()
mask_filler_chinese = get_model_chinese()
#wordlist_chinese = get_wordlist_chinese()
rtd_tokenizer_chinese = get_rtd_tokenizer_chinese()
rtd_model_chinese = get_rtd_model_chinese()
def highlight_given_word(row):
color = '#ACE5EE' if row.Words == target_word else 'white'
return [f'background-color:{color}'] * len(row)
def get_top_5_results(top_k_prediction):
predictions_df = pd.DataFrame(top_k_prediction)
predictions_df = predictions_df.drop(columns=["token", "sequence"])
predictions_df = predictions_df.rename(columns={"score": "Probability", "token_str": "Words"})
if (predictions_df[:5].Words == target_word).sum() == 0:
print("target word not in top 5")
top_5_df = predictions_df[:5]
target_word_df = predictions_df[(predictions_df.Words == target_word)]
print(target_word_df)
top_5_df = pd.concat([top_5_df, target_word_df])
else:
top_5_df = predictions_df[:5]
top_5_df['Probability'] = top_5_df['Probability'].apply(lambda x: f"{x:.2%}")
return top_5_df
#### Streamlit Page
st.title("้€ ๅฅ Self-marking Demo")
if 'target_word' not in st.session_state:
st.session_state['target_word'] = get_word()
target_word = st.session_state['target_word']
target_word_ind = get_wordlist_chinese().index(target_word)
#st.write("Target word: ", target_word)
target_word = st.selectbox("Choose a word:", get_wordlist_chinese(), index = target_word_ind)
if st.button("Get random word"):
st.session_state['target_word'] = get_word()
st.experimental_rerun()
st.subheader("Form your sentence and input below!")
sentence = st.text_input('Enter your sentence here', placeholder="Enter your sentence here!")
if st.button("Grade"):
if sentence.find(target_word) == -1:
st.error("Error: Sentence must include the target word!")
top_k_prediction, score = assess_sentence(target_word, sentence)
with open('./result01.json', 'w') as outfile:
outfile.write(str(top_k_prediction))
errors = get_word_errors(target_word, sentence)
annotated_sentence = get_annotated_sentence(sentence, errors)
annotated_text(annotated_sentence)
st.write(f"Probability score: {score:.1%}. (Target: {WORD_PROBABILITY_THRESHOLD:.1%})")
# st.write(f"Target probability: {WORD_PROBABILITY_THRESHOLD:.1%}")
predictions_df = get_top_5_results(top_k_prediction)
df_style = predictions_df.style.apply(highlight_given_word, axis=1)
if (score >= WORD_PROBABILITY_THRESHOLD):
# st.balloons()
if (len(errors) == 0):
st.success("Yay good job! ๐Ÿ•บ Practice again with other words", icon="โœ…")
else:
st.warning("Potential word errors detected. Try again?")
else:
st.warning("Probability score too low. Maybe try again?")
st.table(df_style)