Spaces:
Running
Running
This one is much better
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import pandas as pd
|
|
10 |
warnings.filterwarnings('ignore')
|
11 |
disable_eager_execution()
|
12 |
|
13 |
-
load_data = np.load('train_test_split_data.npz') # Data saved by the VAE
|
14 |
|
15 |
# Convert Data to Tuples and Assign to respective variables
|
16 |
box_matrix_train, box_density_train, additional_pixels_train, box_shape_train = tuple(load_data['box_matrix_train']), tuple(load_data['box_density_train']), tuple(load_data['additional_pixels_train']), tuple(load_data['box_shape_train'])
|
@@ -245,18 +245,18 @@ thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
|
|
245 |
interpolation_options = [str(int(x)) for x in [3, 5, 10]]
|
246 |
|
247 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
248 |
-
decoder_model_boxes = tensorflow.keras.models.load_model('decoder_model_boxes', compile=False)
|
249 |
# # compile=False ignores a warning from tensorflow, can be removed to see warning
|
250 |
|
251 |
# # import the encoder model architecture
|
252 |
-
json_file_loaded = open('model.json', 'r')
|
253 |
loaded_model_json = json_file_loaded.read()
|
254 |
|
255 |
# load model using the saved json file
|
256 |
encoder_model_boxes = tensorflow.keras.models.model_from_json(loaded_model_json)
|
257 |
|
258 |
# load weights into newly loaded_model
|
259 |
-
encoder_model_boxes.load_weights('model_tf')
|
260 |
|
261 |
num_internal = int(steps)
|
262 |
number_1 = globals()[t1](int(th1), float(d1), 28)
|
|
|
10 |
warnings.filterwarnings('ignore')
|
11 |
disable_eager_execution()
|
12 |
|
13 |
+
load_data = np.load('data/train_test_split_data.npz') # Data saved by the VAE
|
14 |
|
15 |
# Convert Data to Tuples and Assign to respective variables
|
16 |
box_matrix_train, box_density_train, additional_pixels_train, box_shape_train = tuple(load_data['box_matrix_train']), tuple(load_data['box_density_train']), tuple(load_data['additional_pixels_train']), tuple(load_data['box_shape_train'])
|
|
|
245 |
interpolation_options = [str(int(x)) for x in [3, 5, 10]]
|
246 |
|
247 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
248 |
+
decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
|
249 |
# # compile=False ignores a warning from tensorflow, can be removed to see warning
|
250 |
|
251 |
# # import the encoder model architecture
|
252 |
+
json_file_loaded = open('data/model.json', 'r')
|
253 |
loaded_model_json = json_file_loaded.read()
|
254 |
|
255 |
# load model using the saved json file
|
256 |
encoder_model_boxes = tensorflow.keras.models.model_from_json(loaded_model_json)
|
257 |
|
258 |
# load weights into newly loaded_model
|
259 |
+
encoder_model_boxes.load_weights('data/model_tf')
|
260 |
|
261 |
num_internal = int(steps)
|
262 |
number_1 = globals()[t1](int(th1), float(d1), 28)
|