Interp_Imaging / app.py
marta-marta's picture
Added to incorporate a function to export the STL files directly from the user generated inputs
e0d1700
raw
history blame
26.9 kB
import numpy as np
from scipy import signal
import math
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
import streamlit as st
from elasticity import elasticity
import io
from voxel_to_SDF_to_STL import voxel_to_sdf, sdf_to_stl, single_body_check
from PIL import Image
# Needed in requirements.txt for importing to use in the transformers model
import tensorflow
# HELLO HUGGING FACE
########################################################################################################################
# Define the piecewise functions to create each of the possible shapes
def basic_box_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
# Creates the outside edges of the box
for i in range(image_size):
for j in range(image_size):
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
A[i][j] = 1
return A
def back_slash_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == j:
A[i][j] = 1
return A
def forward_slash_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == (image_size - 1) - j:
A[i][j] = 1
return A
def hot_dog_array(image_size):
# Places pixels down the vertical axis to split the box
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def hamburger_array(image_size):
# Places pixels across the horizontal axis to split the box
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def center_array(image_size):
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
A[i][j] = 1
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def update_array(array_original, array_new, image_size):
A = array_original
for i in range(image_size):
for j in range(image_size):
if array_new[i][j] == 1:
A[i][j] = 1
return A
def add_pixels(array_original, additional_pixels, image_size):
# Adds pixels to the thickness of each component of the box
A = array_original
A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for dens in range(additional_pixels):
for i in range(1, image_size - 1):
for j in range(1, image_size - 1):
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
A_updated[i][j] = 1
A = update_array(A, A_updated, image_size)
return A
########################################################################################################################
# Create the desired shape using the density and thickness
def basic_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def horizontal_vertical_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Place pixels across the horizontal and vertical axes to split the box
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def diagonal_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Add pixels along the diagonals of the box
A = update_array(A, back_slash_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# Adds pixels to the thickness of each component of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, forward_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hamburger_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
# A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
# A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def center_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, center_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
########################################################################################################################
# The function to add thickness to struts in an array
def add_thickness(array_original, thickness: int) -> np.ndarray:
"""
:param array_original: [ndarray] - an array with thickness 1 of any shape type
:param thickness: [int] - the number of pixels to be activated surrounding the base shape
:return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated
based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
"""
A = array_original
if thickness == 0: # want an array of all 0's for thickness = 0
A[A > 0] = 0
else:
filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
filter = np.zeros((filter_size, filter_size))
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
# The filter is made into a '+' shape using these functions
convolution = signal.convolve2d(A, filter, mode='same')
A = np.where(convolution <= 1, convolution, 1)
return A
# The function to efficiently combine arrays in a list
def combine_arrays(arrays):
output_array = np.sum(arrays, axis=0) # Add the list of arrays
output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1
return output_array
########################################################################################################################
# Explain the App
st.header("Multi-Lattice Generator Through a VAE Model")
st.write("Shape: the type of shape the lattice will have")
st.write("Density: the pixel intensity of each activated pixel")
st.write("Thickness: the additional pixels added to the base shape")
st.write("Interpolation Length: the number of internal interpolation points that will exist in the interpolation")
########################################################################################################################
# Provide the Options for users to select from
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in np.linspace(2, 20, 19)]
# Provide User Options
st.header("Option 1: Perform a Linear Interpolation")
# Select Shapes
shape_1 = st.selectbox("Shape 1", shape_options)
shape_2 = st.selectbox("Shape 2", shape_options)
# Select Density
density_1 = st.selectbox("Density 1:", density_options, index=len(density_options)-1)
density_2 = st.selectbox("Density 2:", density_options, index=len(density_options)-1)
# Select Thickness
thickness_1 = st.selectbox("Thickness 1", thickness_options)
thickness_2 = st.selectbox("Thickness 2", thickness_options)
# Select Interpolation Length
interp_length = st.selectbox("Interpolation Length", interpolation_options, index=2)
# Define the function to generate unit cells based on user inputs
def generate_unit_cell(shape, density, thickness):
return globals()[shape](int(thickness), float(density), 28)
def display_arrays(array1, array2, label_1, label_2):
# A Function to plot two arrays side by side in streamlit
# Create two columns
col1, col2 = st.columns(2)
# Populate the first column with array1
col1.header(label_1)
col1.write(array1)
# Populate the second column with array2
col2.header(label_2)
col2.write(array2)
# Generate the endpoints
number_1 = generate_unit_cell(shape_1, density_1, thickness_1)
number_2 = generate_unit_cell(shape_2, density_2, thickness_2)
# Calculate the elasticity for the shapes:
elasticity_1 = elasticity(number_1)
elasticity_2 = elasticity(number_2)
# Display the endpoints to the user
if st.button("Generate Endpoint Images and Elasticity Tensors"):
plt.figure(1)
st.header("Endpoints to be generated:")
plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1), plt.title("Shape 1:")
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1), plt.title("Shape 2:")
plt.figure(1)
st.pyplot(plt.figure(1))
########################################################################################################################
# Load the models from existing huggingface model
# Load the encoder model
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder")
# Load the decoder model
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder")
########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
########################################################################################################################
# Establish the Framework for a LINEAR Interpolation
num_interp = int(interp_length) # the number of images to be pictured
latent_matrix = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
latent_matrix.append(new_column)
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
########################################################################################################################
# Create a gif from an interpolation
def interpolate_gif(decoder, latent_endpoint_1, latent_endpoint_2, n=100):
# z = np.stack([latent_endpoint_1 + (latent_endpoint_2 - latent_endpoint_1) * t for t in np.linspace(0, 1, n)])
# interpolate_list = decoder.predict(z)
# interpolate_list = (interpolate_list * 255).astype(np.uint8)
# images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in interpolate_list]
# images_list = images_list + images_list[::-1] # loop back beginning
predicted_interps = []
interp_latent = np.linspace(latent_endpoint_1, latent_endpoint_2, n)
figure = np.zeros((28, 28 * n))
for i in range(n):
generated_image = decoder.predict(np.array([interp_latent[i]]))[0]
figure[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
predicted_interps.append(generated_image[:, :, -1])
# Regular Save for GIF
# images_list[0].save(f'{filename}.gif',save_all=True,append_images=images_list[1:],loop=1)
images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in predicted_interps]
images_list = images_list + images_list[::-1] # loop back beginning
# Create a BytesIO object to hold the GIF data
gif_bytes = io.BytesIO()
images_list[0].save(
gif_bytes,
format='GIF',
save_all=True,
append_images=images_list[1:],
loop=0, duration=100) # Set loop to 0 for infinite looping
# Reset the BytesIO object to the beginning
gif_bytes.seek(0)
st.video(gif_bytes)
# return gif_bytes
########################################################################################################################
# Create an STL file from an interpolation
def convert_to_2_5d_sdf(interpolation, voxel_threshold, pixel_thickness):
# Thresholding determines the distance from the SDF that is used, the threshold provided is a divisor
# 1. Convert the interpolation into a 3D structure
interpolation_3d = [interpolation] * pixel_thickness
# 2. Convert the voxels into an SDF
sdf = voxel_to_sdf(interpolation_3d, voxel_threshold)
return sdf
def convert_sdf_to_stl(sdf, threshold_divisor):
# 3. Check if the SDF is a single body, then convert into an STL
if single_body_check(sdf, threshold_divisor):
# Thresholding determines the distance from the SDF that is used, the thresdhold provided is a divisor
stl = sdf_to_stl(sdf, threshold_divisor)
return stl
########################################################################################################################
# Plotting the Interpolation in 2D Using Chosen Points
if st.checkbox("Generate Linear Interpolation"):
# Generate the set of latent points in the interpolation
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
linear_predicted_interps = []
figure_2 = np.zeros((28, 28 * num_interp))
# Predict the image for each latent point
for i in range(num_interp):
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
linear_predicted_interps.append(generated_image[:, :, -1])
st.image(figure_2, width=600)
# Code to display a gif
# interpolate_gif(decoder_model_boxes, latent_point_1, latent_point_2)
# Code for generating the STL file
st.subheader("Create an STL file from the extruded image!")
if st.checkbox("Select to begin model generation"):
# Creating an STL file of the linear interpolation
pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28)
# Set the image threshold for binarization
voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
"Higher values will result in less defined shapes: ",
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
# Create the SDF File
linear_sdf = convert_to_2_5d_sdf(figure_2, voxel_threshold_input, pixel_thickness_input)
# Set the threshold for the Mesh
threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
max_value=5.0,
value=3.0, key="divisor_threshold")
linear_sdf_min = np.min(linear_sdf)
linear_sdf_max = np.max(linear_sdf)
st.info("Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
str((linear_sdf_max - abs(linear_sdf_min)) / 2))
if st.checkbox("Generate STL Model"):
# Generate the STL File
linear_stl = convert_sdf_to_stl(linear_sdf, threshold_divisor=threshold_divisor_input)
# Download the STL File
with open(linear_stl, 'rb') as file:
st.download_button(
label='Download STL',
data=file,
file_name='linear_interpolation.stl',
key='stl-download'
)
########################################################################################################################
# Provide User Options
st.header("Option 2: Perform a Mesh Interpolation")
st.write("The four corners of this mesh are defined using the shapes in both Option 1 and Option 2")
# Select Shapes
shape_3 = st.selectbox("Shape 3", shape_options)
shape_4 = st.selectbox("Shape 4", shape_options)
# Select Density
density_3 = st.selectbox("Density 3:", density_options, index=len(density_options)-1)
density_4 = st.selectbox("Density 4:", density_options, index=len(density_options)-1)
# Select Thickness
thickness_3 = st.selectbox("Thickness 3", thickness_options)
thickness_4 = st.selectbox("Thickness 4", thickness_options)
# Generate the endpoints
number_3 = generate_unit_cell(shape_3, density_3, thickness_3)
number_4 = generate_unit_cell(shape_4, density_4, thickness_4)
# Display the endpoints to the user
if st.button("Generate Endpoint Images for Mesh and Elasticity Tensors"):
plt.figure(1)
st.header("Endpoints to be generated:")
elasticity_3 = elasticity(number_3)
elasticity_4 = elasticity(number_4)
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
display_arrays(elasticity_3, elasticity_4, "Elasticity Tensor of Shape 3", "Elasticity Tensor of Shape 4")
plt.subplot(2, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 3), plt.imshow(number_3, cmap='gray', vmin=0, vmax=1)
plt.subplot(2, 2, 4), plt.imshow(number_4, cmap='gray', vmin=0, vmax=1)
plt.figure(1)
st.pyplot(plt.figure(1))
########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_3_expand = np.expand_dims(np.expand_dims(number_3, axis=2), axis=0)
number_4_expand = np.expand_dims(np.expand_dims(number_4, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_3 = encoder_model_boxes.predict(number_3_expand)[0]
latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
########################################################################################################################
# Plot a Mesh Gridded Interpolation
if st.checkbox("Generate Mesh Interpolation"):
latent_matrix_2 = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
latent_matrix_2.append(new_column)
latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed
mesh = [] # This will create a mesh by interpolating between the two interpolations
for column in range(num_interp):
row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp)
mesh.append(row)
mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation
generator_model = decoder_model_boxes
figure_3 = np.zeros((28 * num_interp, 28 * num_interp))
mesh_predicted_interps = []
for i in range(num_interp):
for j in range(num_interp):
generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
figure_3[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
mesh_predicted_interps.append(generated_image[:, :, -1])
st.image(figure_3, width=600)
# Code for generating the STL file
st.subheader("Create an STL file from the extruded image!")
if st.checkbox("Select to begin model generation"):
# Creating an STL file of the linear interpolation
mesh_pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1,
value=28)
# Set the image threshold for binarization
mesh_voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
"Higher values will result in less defined shapes: ",
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
# Create the SDF File
mesh_sdf = convert_to_2_5d_sdf(figure_3, mesh_voxel_threshold_input, mesh_pixel_thickness_input)
# Set the threshold for the Mesh
mesh_threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
max_value=5.0,
value=3.0, key="divisor_threshold")
mesh_sdf_min = np.min(mesh_sdf)
mesh_sdf_max = np.max(mesh_sdf)
st.info(
"Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
str((mesh_sdf_max - abs(mesh_sdf_min)) / 2))
if st.checkbox("Generate STL Model"):
# Generate the STL File
linear_stl = convert_sdf_to_stl(mesh_sdf, threshold_divisor=mesh_threshold_divisor_input)
# Download the STL File
with open(linear_stl, 'rb') as file:
st.download_button(
label='Download STL',
data=file,
file_name='interpolation.stl',
key='stl-download'
)