Spaces:
Runtime error
Runtime error
David Chuan-En Lin
commited on
Commit
•
5a11d0a
1
Parent(s):
f58a6c0
Upload files
Browse files- .DS_Store +0 -0
- .gitattributes +3 -0
- README.md +5 -7
- files/.DS_Store +0 -0
- files/skydiving.npy +3 -0
- files/skydiving_features.npy +3 -0
- files/surfing.npy +3 -0
- files/surfing_features.npy +3 -0
- music/.DS_Store +0 -0
- music/and-it-sounds-like.mp3 +3 -0
- music/and-it-went-like.mp3 +3 -0
- music/comfort-chain.mp3 +3 -0
- music/coming-in-hot.mp3 +3 -0
- music/loop.mp3 +3 -0
- music/lovewave.mp3 +3 -0
- music/ready-set.mp3 +3 -0
- music/sheesh.mp3 +3 -0
- music/thinking-out-loud.mp3 +3 -0
- photos/.DS_Store +0 -0
- photos/skydiving/AdobeStock_10001953_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_120216166_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_138896480_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_166023598_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_279780585_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_33345390_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_348814707_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_350837731_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_7005042_Preview.jpeg +3 -0
- photos/skydiving/AdobeStock_96129011_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_185663731_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_211437413_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_220162637_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_220164473_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_328826367_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_415484898_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_46444136_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_495442848_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_54024377_Preview.jpeg +3 -0
- photos/surfing/AdobeStock_70293058_Preview.jpeg +3 -0
- requirements.txt +11 -0
- videogenic.py +607 -0
- videos/.DS_Store +0 -0
- videos/skydiving.mp4 +3 -0
- videos/surfing.mp4 +3 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
.gitattributes
CHANGED
@@ -29,3 +29,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
---
|
2 |
title: Videogenic
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Videogenic
|
3 |
+
emoji: ✨
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.11.0
|
8 |
+
app_file: videogenic.py
|
9 |
pinned: false
|
10 |
---
|
|
|
|
files/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
files/skydiving.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62d9ee5c22ab5d17a4713ff64796d545b81bcfd40cb7d238cc7228434e5b8f3e
|
3 |
+
size 870930480
|
files/skydiving_features.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ec76c93a1b5b4fd293ddd66340a9f6aff9f62a5c5adecfcfbbdd20f66de310
|
3 |
+
size 645248
|
files/surfing.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d246ebd959b39c63681a1ddd61912a5866b91990b01d31dcbde00a6db4e37036
|
3 |
+
size 859871040
|
files/surfing_features.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20cb9e6d3818cc93280d14b53ff31c98c7eb4d09968d8e1e8992eae7e597a3c6
|
3 |
+
size 637056
|
music/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
music/and-it-sounds-like.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1147e33873dd2ddfb8414c50e9b91fd6f88813a8fd4493a66d4d45d21107bb61
|
3 |
+
size 287354
|
music/and-it-went-like.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ea37f421d2ebea3a35876e3b3a710496aa0c80adbeea6152169adef29cba90
|
3 |
+
size 297360
|
music/comfort-chain.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd12feddd5ca89f8b3ac5cc5332d0f9eae6287fe10040b57225de75a67ac3b63
|
3 |
+
size 295632
|
music/coming-in-hot.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25d27fa1d10ed3ed59a2a6ed706a9df319645a0b3208066fcabd2225c2f67814
|
3 |
+
size 229719
|
music/loop.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9655e2b062b6aaf54e709b2c6e53f7774686fd04f93629730bcc95946696e3d9
|
3 |
+
size 61269030
|
music/lovewave.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3b788ea8a983b36f01cd31a765e840e1bff906d84e16efd7b641351021a8d6
|
3 |
+
size 219936
|
music/ready-set.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d11d286777853692d0ce7f88306af9e119335d9ddc40dd9dea4ee03361fb7ba
|
3 |
+
size 380324
|
music/sheesh.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e370d0a9f0e261cdd2e0fbfece30a2a35b5c23e30b11964d812bfb615a017c90
|
3 |
+
size 317043
|
music/thinking-out-loud.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0839c8ced02007f098b2295c177ecb8d0335d55dbec77ae33bab06de9346afea
|
3 |
+
size 134543
|
photos/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
photos/skydiving/AdobeStock_10001953_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_120216166_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_138896480_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_166023598_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_279780585_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_33345390_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_348814707_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_350837731_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_7005042_Preview.jpeg
ADDED
Git LFS Details
|
photos/skydiving/AdobeStock_96129011_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_185663731_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_211437413_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_220162637_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_220164473_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_328826367_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_415484898_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_46444136_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_495442848_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_54024377_Preview.jpeg
ADDED
Git LFS Details
|
photos/surfing/AdobeStock_70293058_Preview.jpeg
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
streamlit_vega_lite
|
3 |
+
opencv-python
|
4 |
+
Pillow
|
5 |
+
torch
|
6 |
+
numpy
|
7 |
+
decord
|
8 |
+
moviepy
|
9 |
+
altair
|
10 |
+
pandas
|
11 |
+
glob2
|
videogenic.py
ADDED
@@ -0,0 +1,607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from pytube import YouTube
|
3 |
+
# from pytube import extract
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import clip as openai_clip
|
7 |
+
import torch
|
8 |
+
import math
|
9 |
+
import numpy as np
|
10 |
+
import tempfile
|
11 |
+
# from humanfriendly import format_timespan
|
12 |
+
import json
|
13 |
+
import sys
|
14 |
+
from random import randrange
|
15 |
+
import logging
|
16 |
+
# from pyunsplash import PyUnsplash
|
17 |
+
import requests
|
18 |
+
import io
|
19 |
+
from io import BytesIO
|
20 |
+
import base64
|
21 |
+
import altair as alt
|
22 |
+
from streamlit_vega_lite import altair_component
|
23 |
+
import pandas as pd
|
24 |
+
from datetime import timedelta
|
25 |
+
import math
|
26 |
+
from decord import VideoReader, cpu, gpu
|
27 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
28 |
+
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
29 |
+
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
|
30 |
+
from moviepy.editor import *
|
31 |
+
import glob
|
32 |
+
|
33 |
+
def fetch_video(url):
|
34 |
+
yt = YouTube(url)
|
35 |
+
streams = yt.streams.filter(adaptive=True, subtype='mp4', resolution='360p', only_video=True)
|
36 |
+
length = yt.length
|
37 |
+
if length >= 300:
|
38 |
+
st.error('Please find a YouTube video shorter than 5 minutes. Sorry about this, the server capacity is limited for the time being.')
|
39 |
+
st.stop()
|
40 |
+
video = streams[0]
|
41 |
+
return video, video.url
|
42 |
+
|
43 |
+
# @st.cache()
|
44 |
+
# def extract_frames(video):
|
45 |
+
# frames = []
|
46 |
+
# capture = cv2.VideoCapture(video)
|
47 |
+
# fps = capture.get(cv2.CAP_PROP_FPS)
|
48 |
+
# current_frame = 0
|
49 |
+
# while capture.isOpened():
|
50 |
+
# ret, frame = capture.read()
|
51 |
+
# if ret == True:
|
52 |
+
# frames.append(Image.fromarray(frame[:, :, ::-1]))
|
53 |
+
# else:
|
54 |
+
# break
|
55 |
+
# current_frame += fps
|
56 |
+
# capture.set(cv2.CAP_PROP_POS_FRAMES, current_frame)
|
57 |
+
# # print(f'Frames extracted: {len(frames)}')
|
58 |
+
|
59 |
+
# return frames, fps
|
60 |
+
|
61 |
+
# @st.cache()
|
62 |
+
def video_to_frames(video):
|
63 |
+
vr = VideoReader(video)
|
64 |
+
frames = []
|
65 |
+
frame_count = len(vr)
|
66 |
+
fps = vr.get_avg_fps()
|
67 |
+
for i in range(0, frame_count, int(fps)):
|
68 |
+
# for i in range(0, frame_count):
|
69 |
+
frame = vr[i].asnumpy()
|
70 |
+
y_dim = frame.shape[0]
|
71 |
+
x_dim = frame.shape[1]
|
72 |
+
frames.append(Image.fromarray(frame))
|
73 |
+
return frames, fps, x_dim, y_dim
|
74 |
+
|
75 |
+
def video_to_info(video):
|
76 |
+
vr = VideoReader(video)
|
77 |
+
frames = []
|
78 |
+
frame_count = len(vr)
|
79 |
+
fps = vr.get_avg_fps()
|
80 |
+
frame = vr[0].asnumpy()
|
81 |
+
y_dim = frame.shape[0]
|
82 |
+
x_dim = frame.shape[1]
|
83 |
+
return fps, x_dim, y_dim
|
84 |
+
|
85 |
+
# @st.cache()
|
86 |
+
def encode_frames(video_frames):
|
87 |
+
batch_size = 256
|
88 |
+
batches = math.ceil(len(video_frames) / batch_size)
|
89 |
+
video_features = torch.empty([0, 512], dtype=torch.float16).to(st.session_state.device)
|
90 |
+
for i in range(batches):
|
91 |
+
batch_frames = video_frames[i*batch_size : (i+1)*batch_size]
|
92 |
+
batch_preprocessed = torch.stack([st.session_state.preprocess(frame) for frame in batch_frames]).to(st.session_state.device)
|
93 |
+
with torch.no_grad():
|
94 |
+
batch_features = st.session_state.model.encode_image(batch_preprocessed)
|
95 |
+
batch_features /= batch_features.norm(dim=-1, keepdim=True)
|
96 |
+
video_features = torch.cat((video_features, batch_features))
|
97 |
+
# print(f'Features: {video_features.shape}')
|
98 |
+
return video_features
|
99 |
+
|
100 |
+
def classify_activity(video_features, activities_list):
|
101 |
+
text = torch.cat([openai_clip.tokenize(
|
102 |
+
f'{activity}') for activity in activities_list]).to(st.session_state.device)
|
103 |
+
with torch.no_grad():
|
104 |
+
text_features = st.session_state.model.encode_text(text)
|
105 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
106 |
+
logit_scale = st.session_state.model.logit_scale.exp()
|
107 |
+
video_features = torch.from_numpy(video_features)
|
108 |
+
similarities = (logit_scale * video_features @
|
109 |
+
text_features.t()).softmax(dim=-1)
|
110 |
+
probs, word_idxs = similarities[0].topk(5)
|
111 |
+
primary_activity = []
|
112 |
+
for prob, word_idx in zip(probs, word_idxs):
|
113 |
+
primary_activity.append(activities_list[word_idx])
|
114 |
+
# primary_activity = activities_list[word_idx]
|
115 |
+
return primary_activity
|
116 |
+
|
117 |
+
def encode_photos(photos):
|
118 |
+
batch_size = 256
|
119 |
+
batches = math.ceil(len(photos) / batch_size)
|
120 |
+
video_features = torch.empty([0, 512], dtype=torch.float16).to(st.session_state.device)
|
121 |
+
for i in range(batches):
|
122 |
+
batch_frames = photos[i*batch_size : (i+1)*batch_size]
|
123 |
+
batch_preprocessed = torch.stack([st.session_state.preprocess(Image.open(frame)) for frame in batch_frames]).to(st.session_state.device)
|
124 |
+
with torch.no_grad():
|
125 |
+
batch_features = st.session_state.model.encode_image(batch_preprocessed)
|
126 |
+
batch_features /= batch_features.norm(dim=-1, keepdim=True)
|
127 |
+
video_features = torch.cat((video_features, batch_features))
|
128 |
+
# print(f'Features: {video_features.shape}')
|
129 |
+
return video_features
|
130 |
+
|
131 |
+
def img_to_bytes(img):
|
132 |
+
img_byte_arr = io.BytesIO()
|
133 |
+
img.save(img_byte_arr, format='JPEG')
|
134 |
+
img_byte_arr = img_byte_arr.getvalue()
|
135 |
+
return img_byte_arr
|
136 |
+
|
137 |
+
def normalize(vector):
|
138 |
+
return (vector - np.min(vector)) / (np.max(vector) - np.min(vector))
|
139 |
+
|
140 |
+
def format_img(img):
|
141 |
+
size = 150, 150
|
142 |
+
# img = Image.fromarray(img)
|
143 |
+
img.thumbnail(size, Image.Resampling.LANCZOS)
|
144 |
+
output = io.BytesIO()
|
145 |
+
img.save(output, format='PNG')
|
146 |
+
encoded_string = f'data:image/png;base64,{base64.b64encode(output.getvalue()).decode()}'
|
147 |
+
return encoded_string
|
148 |
+
|
149 |
+
def get_photos(keyword):
|
150 |
+
photo_collection = []
|
151 |
+
for filename in glob.glob(f'photos/{st.session_state.domain.lower()}/*.jpeg'):
|
152 |
+
photo = Image.open(filename)
|
153 |
+
photo_collection.append(photo)
|
154 |
+
return photo_collection
|
155 |
+
|
156 |
+
# # api_key = 'hzcKZ0e4we95wSd8_ip2zTB3m2DrOMWehAxrYjqjwg0'
|
157 |
+
# api_key = 'fZ1nE7Y4NC-iYGmqgv-WuyM8m9p0LroCdAOZOR6tyho'
|
158 |
+
# unsplash_search = PyUnsplash(api_key=api_key)
|
159 |
+
# logging.getLogger('pyunsplash').setLevel(logging.DEBUG)
|
160 |
+
# search = unsplash_search.search(type_='photos', query=keyword) # per_page
|
161 |
+
# photo_collection = []
|
162 |
+
# # st.markdown(f'**Unsplash photos for `{keyword}`**')
|
163 |
+
# for result in search.entries:
|
164 |
+
# photo_url = result.link_download
|
165 |
+
# response = requests.get(photo_url)
|
166 |
+
# photo = Image.open(BytesIO(response.content))
|
167 |
+
# # st.image(photo, width=200)
|
168 |
+
# photo_collection.append(photo)
|
169 |
+
# return photo_collection
|
170 |
+
|
171 |
+
def display_results(best_photo_idx):
|
172 |
+
st.markdown('**Top 10 highlights**')
|
173 |
+
result_arr = []
|
174 |
+
for frame_id in best_photo_idx:
|
175 |
+
result = st.session_state.video_frames[frame_id]
|
176 |
+
st.image(result)
|
177 |
+
return result_arr
|
178 |
+
|
179 |
+
def make_df(similarities):
|
180 |
+
similarities = similarities
|
181 |
+
df = pd.DataFrame()
|
182 |
+
df['keyword'] = [keyword] * len(similarities)
|
183 |
+
df['x'] = [i for i, _ in enumerate(similarities)]
|
184 |
+
df['y'] = normalize(np.power(similarities, 8))
|
185 |
+
df['image'] = [format_img(frame) for frame in st.session_state.video_frames]
|
186 |
+
return df
|
187 |
+
|
188 |
+
# @st.cache()
|
189 |
+
def compute_scores(search_query, video_features, text_query, display_results_count=10):
|
190 |
+
sum_photo = torch.zeros(1, 512)
|
191 |
+
for photo in search_query:
|
192 |
+
with torch.no_grad():
|
193 |
+
image_features = st.session_state.model.encode_image(st.session_state.preprocess(photo).unsqueeze(0).to(st.session_state.device))
|
194 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
195 |
+
sum_photo += sum_photo + image_features
|
196 |
+
avg_photo = sum_photo / len(search_query)
|
197 |
+
video_features = torch.from_numpy(video_features)
|
198 |
+
similarities = (100.0 * video_features @ avg_photo.T)
|
199 |
+
# values, best_photo_idx = similarities.topk(display_results_count, dim=0)
|
200 |
+
# display_results(best_photo_idx)
|
201 |
+
return similarities.cpu().numpy()
|
202 |
+
|
203 |
+
def avenir():
|
204 |
+
font = 'Avenir'
|
205 |
+
return {
|
206 |
+
'config' : {
|
207 |
+
'title': {'font': font},
|
208 |
+
'axis': {
|
209 |
+
'labelFont': font,
|
210 |
+
'titleFont': font
|
211 |
+
}
|
212 |
+
}
|
213 |
+
}
|
214 |
+
|
215 |
+
alt.themes.register('avenir', avenir)
|
216 |
+
alt.themes.enable('avenir')
|
217 |
+
|
218 |
+
# TODO: Make playhead scores and average according to keyword
|
219 |
+
# TODO: Maximum interval selection
|
220 |
+
# TODO: Interactive legend https://altair-viz.github.io/gallery/interactive_legend.html
|
221 |
+
# TODO: Multi-line highlight https://altair-viz.github.io/gallery/multiline_highlight.html
|
222 |
+
@st.cache
|
223 |
+
def draw_chart(df, mode):
|
224 |
+
if st.session_state.mode == 'Automatic':
|
225 |
+
nearest = alt.selection(type='single', nearest=True, on='mouseover', empty='none')
|
226 |
+
line = alt.Chart(df).mark_line().encode(
|
227 |
+
x=alt.X('x:Q', axis=alt.Axis(labels=True, tickSize=0, title='')),
|
228 |
+
y=alt.Y('y', axis=alt.Axis(labels=False, tickSize=0, title='')),
|
229 |
+
# color=alt.Color('keyword:N', scale=alt.Scale(scheme='tableau20')),
|
230 |
+
color=alt.value('#00C7BE'),
|
231 |
+
# color=alt.Color('#9b59b6'),
|
232 |
+
)
|
233 |
+
selectors = alt.Chart(df).mark_point().encode(
|
234 |
+
x='x:Q',
|
235 |
+
opacity=alt.value(0),
|
236 |
+
).add_selection(
|
237 |
+
nearest
|
238 |
+
)
|
239 |
+
rules = alt.Chart(df).mark_rule(color='black').encode(
|
240 |
+
x='x:Q',
|
241 |
+
).transform_filter(
|
242 |
+
nearest
|
243 |
+
)
|
244 |
+
points = line.mark_point().encode(
|
245 |
+
opacity=alt.condition(nearest, alt.value(1), alt.value(0))
|
246 |
+
)
|
247 |
+
text = line.mark_text(align='center', yOffset=-110, fontSize=16).encode(
|
248 |
+
text=alt.condition(nearest, 'y:N', alt.value(' ')),
|
249 |
+
color=alt.value('#000000'),
|
250 |
+
# fontSize=30
|
251 |
+
).transform_calculate(y=f'format(datum.y, ".2f")')
|
252 |
+
image = line.mark_image(align='center', width=150, height=150, yOffset=-60).encode(
|
253 |
+
url=alt.condition(nearest, 'image', alt.value(' '))
|
254 |
+
)
|
255 |
+
chart = alt.layer(line, selectors, points, rules, text, image)
|
256 |
+
elif st.session_state.mode == 'brush':
|
257 |
+
brush = alt.selection(type='interval', encodings=['x'])
|
258 |
+
line = alt.Chart(df).mark_line().encode( # https://www.rdocumentation.org/packages/vegalite/versions/0.6.1/topics/mark_line
|
259 |
+
x=alt.X('x:Q', axis=alt.Axis(labels=True, tickSize=0, title='')),
|
260 |
+
y=alt.Y('y:Q', axis=alt.Axis(labels=False, tickSize=0, title='')),
|
261 |
+
# color=alt.Color('keyword:N', scale=alt.Scale(scheme='tableau20')),
|
262 |
+
color=alt.value('#00C7BE'),
|
263 |
+
).add_selection(
|
264 |
+
brush
|
265 |
+
)
|
266 |
+
text = alt.Chart(df).transform_filter(brush).mark_text(
|
267 |
+
align='right',
|
268 |
+
# baseline='top',
|
269 |
+
# dx=1500
|
270 |
+
dx=750,
|
271 |
+
dy=-12,
|
272 |
+
fontSize=24,
|
273 |
+
fontWeight=800,
|
274 |
+
).encode(
|
275 |
+
# x='max(x):Q',
|
276 |
+
y='mean(y):Q',
|
277 |
+
# dy=alt.value(10),
|
278 |
+
text=alt.Text('mean(y):Q', format='.2f'),
|
279 |
+
)
|
280 |
+
average = alt.Chart(df).mark_rule(color='black', strokeDash=[5, 5]).encode(
|
281 |
+
y='mean(y):Q',
|
282 |
+
# size=alt.SizeValue(3),
|
283 |
+
).transform_filter(
|
284 |
+
brush
|
285 |
+
)
|
286 |
+
# chart = alt.layer(line, average, text)
|
287 |
+
chart = line
|
288 |
+
elif st.session_state.mode == 'User selection':
|
289 |
+
brush = alt.selection(type='interval', encodings=['x'])
|
290 |
+
line = alt.Chart(df).mark_line().encode( # https://www.rdocumentation.org/packages/vegalite/versions/0.6.1/topics/mark_line
|
291 |
+
x=alt.X('x:Q', axis=alt.Axis(labels=True, tickSize=0, title='')),
|
292 |
+
y=alt.Y('y:Q', axis=alt.Axis(labels=False, tickSize=0, title='')),
|
293 |
+
# color=alt.Color('keyword:N', scale=alt.Scale(scheme='tableau20')),
|
294 |
+
color=alt.value('#00C7BE'),
|
295 |
+
).add_selection(
|
296 |
+
brush
|
297 |
+
)
|
298 |
+
text = alt.Chart(df).transform_filter(brush).mark_text(
|
299 |
+
align='right',
|
300 |
+
# baseline='top',
|
301 |
+
# dx=1500
|
302 |
+
dx=750,
|
303 |
+
dy=-12,
|
304 |
+
fontSize=24,
|
305 |
+
fontWeight=800,
|
306 |
+
).encode(
|
307 |
+
# x='max(x):Q',
|
308 |
+
y='mean(y):Q',
|
309 |
+
# dy=alt.value(10),
|
310 |
+
text=alt.Text('mean(y):Q', format='.2f'),
|
311 |
+
)
|
312 |
+
average = alt.Chart(df).mark_rule(color='black', strokeDash=[5, 5]).encode(
|
313 |
+
y='mean(y):Q',
|
314 |
+
# size=alt.SizeValue(3),
|
315 |
+
).transform_filter(
|
316 |
+
brush
|
317 |
+
)
|
318 |
+
# chart = alt.layer(line, average, text)
|
319 |
+
chart = line
|
320 |
+
return chart.properties(width=1250, height=500).configure_axis(grid=False, domain=False).configure_view(strokeOpacity=0)
|
321 |
+
# return line
|
322 |
+
|
323 |
+
def max_subarray(arr, k):
|
324 |
+
n = len(arr)
|
325 |
+
if (n < k):
|
326 |
+
st.write('Video too short')
|
327 |
+
res = 0
|
328 |
+
left = 0
|
329 |
+
right = k
|
330 |
+
for i in range(k):
|
331 |
+
res += arr[i]
|
332 |
+
curr_sum = res
|
333 |
+
for i in range(k, n):
|
334 |
+
curr_sum += arr[i] - arr[i - k]
|
335 |
+
if curr_sum > res:
|
336 |
+
res = curr_sum
|
337 |
+
left = i - k
|
338 |
+
right = i
|
339 |
+
return res, left, right
|
340 |
+
|
341 |
+
def edit_video(template, df_all):
|
342 |
+
video_path = f'videos/{st.session_state.domain.lower()}.mp4'
|
343 |
+
if template == 'Coming In Hot by Andy Mineo & Lecrae (hype, 7 seconds)':
|
344 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 7)
|
345 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
346 |
+
fps = video.fps
|
347 |
+
x_dim = st.session_state.x_dim
|
348 |
+
y_dim = st.session_state.y_dim
|
349 |
+
music_path = 'music/coming-in-hot.mp3'
|
350 |
+
blank1 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.6)
|
351 |
+
flash1 = video.subclip(t_start=0, t_end=1.2)
|
352 |
+
blank2 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
353 |
+
flash2 = video.subclip(t_start=1.3, t_end=1.4)
|
354 |
+
blank3 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
355 |
+
flash3 = video.subclip(t_start=1.5, t_end=3.3)
|
356 |
+
blank4 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
357 |
+
flash4 = video.subclip(t_start=3.4, t_end=3.5)
|
358 |
+
blank5 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
359 |
+
flash5 = video.subclip(t_start=3.6, t_end=4.6)
|
360 |
+
blank6 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
361 |
+
flash6 = video.subclip(t_start=4.7, t_end=4.8)
|
362 |
+
blank7 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
363 |
+
highlight = video.subclip(t_start=4.9, t_end=6.384)
|
364 |
+
output = concatenate_videoclips([blank1, flash1, blank2, flash2, blank3, flash3, blank4, flash4, blank5, flash5, blank6, flash6, blank7, highlight])
|
365 |
+
elif template == 'Thinking Out Loud Cypher by Jermsego (hype, 8 seconds)':
|
366 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 7)
|
367 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
368 |
+
fps = video.fps
|
369 |
+
x_dim = st.session_state.x_dim
|
370 |
+
y_dim = st.session_state.y_dim
|
371 |
+
music_path = 'music/thinking-out-loud.mp3'
|
372 |
+
blank = ColorClip((x_dim, y_dim), (0, 0, 0), duration=1.6)
|
373 |
+
highlight = video.subclip(t_start=0, t_end=6.852)
|
374 |
+
output = concatenate_videoclips([blank, highlight])
|
375 |
+
elif template == 'Sheesh by Surfaces (upbeat, 10 seconds)':
|
376 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 8)
|
377 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
378 |
+
fps = video.fps
|
379 |
+
x_dim = st.session_state.x_dim
|
380 |
+
y_dim = st.session_state.y_dim
|
381 |
+
music_path = 'music/sheesh.mp3'
|
382 |
+
blank1 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=3.5)
|
383 |
+
flash1 = video.subclip(t_start=0, t_end=0.1)
|
384 |
+
blank2 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
385 |
+
flash2 = video.subclip(t_start=0.2, t_end=0.3)
|
386 |
+
blank3 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
387 |
+
flash3 = video.subclip(t_start=0.4, t_end=0.5)
|
388 |
+
blank4 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.1)
|
389 |
+
flash4 = video.subclip(t_start=0.6, t_end=0.7)
|
390 |
+
blank5 = ColorClip((x_dim, y_dim), (0, 0, 0), duration=0.9)
|
391 |
+
highlight = video.subclip(t_start=1.6, t_end=7.18408163265)
|
392 |
+
output = concatenate_videoclips([blank1, flash1, blank2, flash2, blank3, flash3, blank4, flash4, blank5, highlight])
|
393 |
+
elif template == 'Moon by Kid Francescoli (tranquil, 10 seconds)':
|
394 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 9)
|
395 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
396 |
+
fps = video.fps
|
397 |
+
x_dim = st.session_state.x_dim
|
398 |
+
y_dim = st.session_state.y_dim
|
399 |
+
music_path = 'music/and-it-went-like.mp3'
|
400 |
+
blank = ColorClip((x_dim, y_dim), (0, 0, 0), duration=1.9)
|
401 |
+
highlight = video.subclip(t_start=0, t_end=8.132)
|
402 |
+
output = concatenate_videoclips([blank, highlight])
|
403 |
+
elif template == 'Ready Set by Joey Valence & Brae (old school, 10 seconds)':
|
404 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 11)
|
405 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
406 |
+
fps = video.fps
|
407 |
+
x_dim = st.session_state.x_dim
|
408 |
+
y_dim = st.session_state.y_dim
|
409 |
+
music_path = 'music/ready-set.mp3'
|
410 |
+
highlight = video.subclip(t_start=0, t_end=10.512)
|
411 |
+
output = highlight
|
412 |
+
elif template == 'Lovewave by The 1-800 (tranquil, 13 seconds)':
|
413 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 12)
|
414 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
415 |
+
fps = video.fps
|
416 |
+
x_dim = st.session_state.x_dim
|
417 |
+
y_dim = st.session_state.y_dim
|
418 |
+
music_path = 'music/lovewave.mp3'
|
419 |
+
blank = ColorClip((x_dim, y_dim), (0, 0, 0), duration=2.1)
|
420 |
+
highlight = video.subclip(t_start=0, t_end=11.58)
|
421 |
+
output = concatenate_videoclips([blank, highlight])
|
422 |
+
elif template == 'And It Sounds Like by Forrest Nolan (tranquil, 17 seconds)':
|
423 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 16)
|
424 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
425 |
+
fps = video.fps
|
426 |
+
x_dim = st.session_state.x_dim
|
427 |
+
y_dim = st.session_state.y_dim
|
428 |
+
music_path = 'music/and-it-sounds-like.mp3'
|
429 |
+
blank = ColorClip((x_dim, y_dim), (0, 0, 0), duration=2)
|
430 |
+
highlight = video.subclip(t_start=0, t_end=15.928)
|
431 |
+
output = concatenate_videoclips([blank, highlight])
|
432 |
+
elif template == 'Comfort Chain by Instupendo (lofi, 18 seconds)':
|
433 |
+
res, left, right = max_subarray(df_all['y'].tolist(), 19)
|
434 |
+
video = VideoFileClip(video_path).subclip(t_start=left, t_end=right)
|
435 |
+
fps = video.fps
|
436 |
+
x_dim = st.session_state.x_dim
|
437 |
+
y_dim = st.session_state.y_dim
|
438 |
+
music_path = 'music/comfort-chain.mp3'
|
439 |
+
highlight = video.subclip(t_start=0, t_end=18.432000000000002)
|
440 |
+
output = highlight
|
441 |
+
# st.write(res, left, right)
|
442 |
+
song = AudioFileClip(music_path)
|
443 |
+
output = output.set_audio(song)
|
444 |
+
output.write_videofile('output.mp4', temp_audiofile='temp.m4a', remove_temp=True, audio_codec='aac', logger=None, fps=fps)
|
445 |
+
st.video('output.mp4')
|
446 |
+
# return output
|
447 |
+
|
448 |
+
def crop_video(df_all, left, right):
|
449 |
+
video_path = f'videos/{st.session_state.domain.lower()}.mp4'
|
450 |
+
video = VideoFileClip(video_path)
|
451 |
+
fps = video.fps
|
452 |
+
music_path = 'music/loop.mp3'
|
453 |
+
song = AudioFileClip(music_path)
|
454 |
+
video = video.set_audio(song)
|
455 |
+
output = video.subclip(t_start=left, t_end=right)
|
456 |
+
output.write_videofile('output.mp4', temp_audiofile='temp.m4a', remove_temp=True, audio_codec='aac', logger=None, fps=fps)
|
457 |
+
st.video('output.mp4')
|
458 |
+
# return output
|
459 |
+
|
460 |
+
st.set_page_config(page_title='Videogenic', page_icon = '✨', layout = 'wide', initial_sidebar_state = 'collapsed')
|
461 |
+
|
462 |
+
hide_streamlit_style = """
|
463 |
+
<style>
|
464 |
+
#MainMenu {visibility: hidden;}
|
465 |
+
footer {visibility: hidden;}
|
466 |
+
* {font-family: Avenir; cursor: pointer;}
|
467 |
+
.css-gma2qf {display: flex; justify-content: center; font-size: 42px; font-weight: bold;}
|
468 |
+
a:link {text-decoration: none;}
|
469 |
+
a:hover {text-decoration: none;}
|
470 |
+
.st-ba {font-family: Avenir;}
|
471 |
+
</style>
|
472 |
+
"""
|
473 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
474 |
+
|
475 |
+
# clustrmaps = """
|
476 |
+
# <a href="https://clustrmaps.com/site/1bham" target="_blank" title="Visit tracker"><img src="//www.clustrmaps.com/map_v2.png?d=NhNk5g9hy6Y06nqo7RirhHvZSr89uSS8rPrt471wAXw&cl=ffffff" width="0" height="0"></a>
|
477 |
+
# """
|
478 |
+
|
479 |
+
# st.markdown(clustrmaps, unsafe_allow_html=True)
|
480 |
+
|
481 |
+
# ss = SessionState.get(url=None, id=None, input=None, file_name=None, video=None, video_name=None, video_frames=None, video_features=None, fps=None, mode=None, query=None, progress=1)
|
482 |
+
|
483 |
+
st.title('Videogenic ✨')
|
484 |
+
if 'progress' not in st.session_state:
|
485 |
+
st.session_state.progress = 1
|
486 |
+
|
487 |
+
# mode = 'play'
|
488 |
+
# mode = 'brush'
|
489 |
+
# mode = 'select'
|
490 |
+
|
491 |
+
if st.session_state.progress == 1:
|
492 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
493 |
+
model, preprocess = openai_clip.load('ViT-B/32', device=device)
|
494 |
+
if 'model' not in st.session_state:
|
495 |
+
st.session_state.model = model
|
496 |
+
st.session_state.preprocess = preprocess
|
497 |
+
st.session_state.device = device
|
498 |
+
st.session_state.model = model
|
499 |
+
st.session_state.preprocess = preprocess
|
500 |
+
st.session_state.device = device
|
501 |
+
domain = st.selectbox('Select video',('Skydiving', 'Surfing')) # Entire journey, montage, vlog
|
502 |
+
if 'domain' not in st.session_state:
|
503 |
+
st.session_state.domain = domain
|
504 |
+
st.session_state.domain = domain
|
505 |
+
if st.button('Process video'):
|
506 |
+
video_name = f'videos/{st.session_state.domain.lower()}.mp4'
|
507 |
+
video_file = open(video_name, 'rb')
|
508 |
+
video_bytes = video_file.read()
|
509 |
+
if 'video' not in st.session_state:
|
510 |
+
st.session_state.video = video_bytes
|
511 |
+
st.session_state.video = video_bytes
|
512 |
+
# st.video(st.session_state.video)
|
513 |
+
# video_frames, fps, x_dim, y_dim = video_to_frames(video_name) # first run; video_to_info
|
514 |
+
# np.save(f'files/{st.session_state.domain.lower()}.npy', video_frames)
|
515 |
+
fps, x_dim, y_dim = video_to_info(video_name)
|
516 |
+
video_frames = np.load(f'files/{st.session_state.domain.lower()}.npy', allow_pickle=True)
|
517 |
+
if 'video_frames' not in st.session_state:
|
518 |
+
st.session_state.video_frames = video_frames
|
519 |
+
st.session_state.fps = fps
|
520 |
+
st.session_state.x_dim = x_dim
|
521 |
+
st.session_state.y_dim = y_dim
|
522 |
+
st.session_state.video_frames = video_frames
|
523 |
+
st.session_state.fps = fps
|
524 |
+
st.session_state.x_dim = x_dim
|
525 |
+
st.session_state.y_dim = y_dim
|
526 |
+
print('Extracted frames')
|
527 |
+
# encoded_frames = encode_frames(video_frames) # first run
|
528 |
+
# np.save(f'files/{st.session_state.domain.lower()}_features.npy', encoded_frames)
|
529 |
+
encoded_frames = np.load(f'files/{st.session_state.domain.lower()}_features.npy', allow_pickle=True)
|
530 |
+
if 'video_features' not in st.session_state:
|
531 |
+
# st.session_state.video_features = encoded_frames
|
532 |
+
st.session_state.video_features = encoded_frames
|
533 |
+
st.session_state.video_features = encoded_frames
|
534 |
+
print('Encoded frames')
|
535 |
+
st.session_state.progress = 2
|
536 |
+
|
537 |
+
# with open('activities.txt') as f:
|
538 |
+
# activities_list = [line.rstrip('\n') for line in f]
|
539 |
+
# keywords = classify_activity(st.session_state.video_features, activities_list)
|
540 |
+
# st.write(keywords)
|
541 |
+
|
542 |
+
if st.session_state.progress == 2:
|
543 |
+
mode = st.radio('Select mode', ('Automatic', 'User selection'))
|
544 |
+
if 'mode' not in st.session_state:
|
545 |
+
st.session_state.mode = mode
|
546 |
+
st.session_state.mode = mode
|
547 |
+
# keywords = list(st.text_input('Enter topic').split(','))
|
548 |
+
# if st.button('Compute scores') and keywords is not None:
|
549 |
+
keyword = st.session_state.domain.lower()
|
550 |
+
df_list = []
|
551 |
+
# for keyword in keywords:
|
552 |
+
img_set = get_photos(keyword)
|
553 |
+
similarities = compute_scores(img_set, st.session_state.video_features, keyword)
|
554 |
+
# st.write(similarities)
|
555 |
+
df = make_df(similarities)
|
556 |
+
df_list.append(df)
|
557 |
+
df_all = pd.concat(df_list, ignore_index=True, sort=False)
|
558 |
+
if 'df_all' not in st.session_state:
|
559 |
+
st.session_state.df_all = df_all
|
560 |
+
st.session_state.df_all = df_all
|
561 |
+
# st.write(df_all)
|
562 |
+
# highlight_length = 7.033
|
563 |
+
# st.write(st.session_state.fps)
|
564 |
+
selection = altair_component(draw_chart(df_all, st.session_state.mode))
|
565 |
+
print(selection)
|
566 |
+
# if '_vgsid_' in selection:
|
567 |
+
# # the ids start at 1
|
568 |
+
# st.write(df.iloc[[selection['_vgsid_'][0] - 1]])
|
569 |
+
# else:
|
570 |
+
# st.info('Hover over the chart above to see details about the Penguin here.')
|
571 |
+
# if 'x' in selection:
|
572 |
+
# # the ids start at 1
|
573 |
+
# st.write(selection['x'])
|
574 |
+
# chart = draw_chart(df_all, mode)
|
575 |
+
# st.altair_chart(chart, use_container_width=False)
|
576 |
+
# st.session_state.progress = 3
|
577 |
+
|
578 |
+
# if st.session_state.progress == 3:
|
579 |
+
if st.session_state.mode == 'Automatic':
|
580 |
+
# template = st.selectbox('Select template', ['Coming In Hot by Andy Mineo & Lecrae (hype, 7 seconds)', 'Thinking Out Loud Cypher by Jermsego (hype, 8 seconds)', 'Sheesh by Surfaces (upbeat, 10 seconds)',
|
581 |
+
# 'Moon by Kid Francescoli (tranquil, 10 seconds)', 'Ready Set by Joey Valence & Brae (old school, 10 seconds)', 'Lovewave by The 1-800 (tranquil, 13 seconds)',
|
582 |
+
# 'And It Sounds Like by Forrest Nolan (tranquil, 17 seconds)', 'Comfort Chain by Instupendo (lofi, 18 seconds)'])
|
583 |
+
template = st.selectbox('Select template', ['Coming In Hot by Andy Mineo & Lecrae (hype, 7 seconds)', 'Sheesh by Surfaces (upbeat, 10 seconds)', 'Lovewave by The 1-800 (tranquil, 13 seconds)'])
|
584 |
+
|
585 |
+
if st.button('Generate video'):
|
586 |
+
edit_video(template, st.session_state.df_all)
|
587 |
+
elif st.session_state.mode == 'User selection':
|
588 |
+
if st.button('Generate video'):
|
589 |
+
left = selection['x'][0]
|
590 |
+
right = selection['x'][1]
|
591 |
+
crop_video(st.session_state.df_all, left, right)
|
592 |
+
# res, left, right = max_subarray(df_all['y'].tolist(), 8)
|
593 |
+
|
594 |
+
# if 'left' not in st.session_state:
|
595 |
+
# st.session_state.left = left
|
596 |
+
# st.session_state.right = right
|
597 |
+
# video_path = f'videos/{domain.lower()}.mp4'
|
598 |
+
# music_path = 'music/sheesh.wav'
|
599 |
+
# video = VideoFileClip(video_path).subclip(t_start=st.session_state.left, t_end=st.session_state.right)
|
600 |
+
# fps = video.fps
|
601 |
+
# x_dim = st.session_state.x_dim
|
602 |
+
# y_dim = st.session_state.y_dim
|
603 |
+
# song = AudioFileClip(music_path)
|
604 |
+
# output = edit_video(video, template)
|
605 |
+
# st.video('output.mp4')
|
606 |
+
# np.save('skydiving_features', st.session_state.video_features)
|
607 |
+
# np.save('skydiving_frames', st.session_state.video_frames)
|
videos/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
videos/skydiving.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96534459fdba80dd076a7c4de5e6d9553db55640baf3ff5956450de3efd0586b
|
3 |
+
size 79814669
|
videos/surfing.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b566c3d0c6894193302096f069b2970f402f0048b4640a6f764889ebe3dfa817
|
3 |
+
size 81639070
|