Upload 3 files
Browse files- app.py +124 -0
- requirements.txt +1 -0
- weights/.cxas/UNet_ResNet50_default.pth +3 -0
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
os.environ["CXAS_PATH"] = "./weights"
|
9 |
+
|
10 |
+
|
11 |
+
os.makedirs("tmp", exist_ok=True)
|
12 |
+
|
13 |
+
# Helper function to run the segmentation command
|
14 |
+
def run_segmentation(input_image_path, output_folder, mode="segment", gpu="cpu"):
|
15 |
+
command = f"cxas -i {input_image_path} -o {output_folder} --mode {mode} -g {gpu} -s"
|
16 |
+
subprocess.run(command, shell=True)
|
17 |
+
return output_folder
|
18 |
+
|
19 |
+
# Helper function to colorize and outline the binary mask
|
20 |
+
def colorize_and_outline_mask(mask_image, color=(0, 255, 0)):
|
21 |
+
mask_np = np.array(mask_image.convert("L")) # Ensure it is a grayscale image
|
22 |
+
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
|
23 |
+
colorized_mask = np.zeros((mask_np.shape[0], mask_np.shape[1], 3), dtype=np.uint8)
|
24 |
+
colorized_mask[mask_np == 255] = color # Apply the color to mask regions
|
25 |
+
edges = cv2.Canny(mask_np, 100, 200) # Detect edges
|
26 |
+
colorized_mask[edges == 255] = [255, 255, 255] # Highlight the edges
|
27 |
+
return colorized_mask
|
28 |
+
|
29 |
+
# Helper function to overlay mask on the image
|
30 |
+
def overlay_mask_on_image(input_image, mask_image, alpha=0.5):
|
31 |
+
input_image_np = np.array(input_image)
|
32 |
+
if len(input_image_np.shape) == 2: # Convert grayscale to RGB
|
33 |
+
input_image_np = cv2.cvtColor(input_image_np, cv2.COLOR_GRAY2RGB)
|
34 |
+
mask_image_resized = cv2.resize(mask_image, (input_image_np.shape[1], input_image_np.shape[0]))
|
35 |
+
overlayed_image = cv2.addWeighted(input_image_np, 1-alpha, mask_image_resized, alpha, 0)
|
36 |
+
return overlayed_image
|
37 |
+
|
38 |
+
# Streamlit app
|
39 |
+
st.title("Image Segmentation Tool")
|
40 |
+
|
41 |
+
# Check if session state is initialized
|
42 |
+
if "input_image" not in st.session_state:
|
43 |
+
st.session_state.input_image = None
|
44 |
+
st.session_state.output_folder = None
|
45 |
+
st.session_state.mask_files = []
|
46 |
+
st.session_state.segmentation_done = False
|
47 |
+
st.session_state.selected_mask = None # Store selected mask in session state
|
48 |
+
|
49 |
+
# File uploader for user to input image
|
50 |
+
uploaded_image = st.file_uploader("Upload an image file", type=["png", "jpg", "jpeg"])
|
51 |
+
|
52 |
+
# If a new image is uploaded, reset the session state
|
53 |
+
if uploaded_image is not None:
|
54 |
+
if not os.path.isdir(os.path.join("tmp/output", os.path.splitext(uploaded_image.name)[0])):
|
55 |
+
os.makedirs("tmp", exist_ok=True)
|
56 |
+
st.session_state.input_image = Image.open(uploaded_image) # Store the image in session state
|
57 |
+
input_image_path = f"tmp/{uploaded_image.name}"
|
58 |
+
st.session_state.input_image.save(input_image_path)
|
59 |
+
|
60 |
+
input_image_name = os.path.splitext(uploaded_image.name)[0]
|
61 |
+
output_folder = os.path.join("tmp/output")
|
62 |
+
if not os.path.exists(output_folder):
|
63 |
+
os.makedirs(output_folder)
|
64 |
+
st.session_state.output_folder = output_folder
|
65 |
+
st.session_state.mask_files = []
|
66 |
+
st.session_state.segmentation_done = False
|
67 |
+
st.session_state.selected_mask = None # Reset mask selection
|
68 |
+
|
69 |
+
st.image(st.session_state.input_image, caption="Uploaded Image", use_column_width=True)
|
70 |
+
|
71 |
+
# Run segmentation if not already done
|
72 |
+
if not st.session_state.segmentation_done:
|
73 |
+
if st.button("Run Segmentation"):
|
74 |
+
with st.spinner("Running segmentation..."):
|
75 |
+
run_segmentation(input_image_path, st.session_state.output_folder)
|
76 |
+
st.session_state.output_folder = os.path.join("tmp/output", input_image_name)
|
77 |
+
st.success(f"Segmentation completed. Masks saved in {st.session_state.output_folder}")
|
78 |
+
|
79 |
+
st.session_state.mask_files = [f for f in os.listdir(st.session_state.output_folder) if f.endswith('.png')]
|
80 |
+
st.session_state.segmentation_done = True
|
81 |
+
|
82 |
+
else:
|
83 |
+
input_image_name = os.path.splitext(uploaded_image.name)[0]
|
84 |
+
st.session_state.input_image = Image.open(f"tmp/{uploaded_image.name}")
|
85 |
+
st.session_state.output_folder = os.path.join("tmp/output", input_image_name)
|
86 |
+
st.success(f"Segmentation completed. Masks saved in {st.session_state.output_folder}")
|
87 |
+
|
88 |
+
st.session_state.mask_files = [f for f in os.listdir(st.session_state.output_folder) if f.endswith('.png')]
|
89 |
+
st.session_state.segmentation_done = True
|
90 |
+
|
91 |
+
|
92 |
+
# Display uploaded image
|
93 |
+
if st.session_state.input_image is not None:
|
94 |
+
|
95 |
+
# Only display dropdown and images if segmentation is done
|
96 |
+
if st.session_state.segmentation_done and st.session_state.mask_files:
|
97 |
+
# Dropdown to select a mask
|
98 |
+
selected_mask = st.selectbox("Select a mask to overlay", st.session_state.mask_files,
|
99 |
+
index=st.session_state.mask_files.index(st.session_state.selected_mask)
|
100 |
+
if st.session_state.selected_mask else 0)
|
101 |
+
|
102 |
+
# Save the selected mask in session state
|
103 |
+
st.session_state.selected_mask = selected_mask
|
104 |
+
|
105 |
+
# Load the selected mask
|
106 |
+
mask_image = Image.open(os.path.join(st.session_state.output_folder, selected_mask))
|
107 |
+
|
108 |
+
# Colorize the binary mask and add an outline
|
109 |
+
colorized_mask = colorize_and_outline_mask(mask_image)
|
110 |
+
|
111 |
+
# Overlay the selected mask on the input image
|
112 |
+
overlayed_image = overlay_mask_on_image(st.session_state.input_image, colorized_mask)
|
113 |
+
|
114 |
+
# Display the images side by side
|
115 |
+
col1, col2 = st.columns(2)
|
116 |
+
|
117 |
+
with col1:
|
118 |
+
st.image(st.session_state.input_image, caption="Original Image", use_column_width=True)
|
119 |
+
|
120 |
+
with col2:
|
121 |
+
st.image(overlayed_image, caption="Overlayed Image with Mask", use_column_width=True)
|
122 |
+
|
123 |
+
else:
|
124 |
+
st.info("Please upload an image to get started.")
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
cxas
|
weights/.cxas/UNet_ResNet50_default.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bdc485da991693860c18b759d63e7404cc6ab01b7a15c987c350212b581e0e2
|
3 |
+
size 881081391
|