virtual-tryon-demo / densepose /evaluation /densepose_coco_evaluation.py
cmahima's picture
Upload 114 files
fb9d4c3 verified
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# This is a modified version of cocoeval.py where we also have the densepose evaluation.
__author__ = "tsungyi"
import copy
import datetime
import logging
import numpy as np
import pickle
import time
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, Tuple
import scipy.spatial.distance as ssd
import torch
import torch.nn.functional as F
from pycocotools import mask as maskUtils
from scipy.io import loadmat
from scipy.ndimage import zoom as spzoom
from detectron2.utils.file_io import PathManager
from densepose.converters.chart_output_to_chart_result import resample_uv_tensors_to_bbox
from densepose.converters.segm_to_mask import (
resample_coarse_segm_tensor_to_bbox,
resample_fine_and_coarse_segm_tensors_to_bbox,
)
from densepose.modeling.cse.utils import squared_euclidean_distance_matrix
from densepose.structures import DensePoseDataRelative
from densepose.structures.mesh import create_mesh
logger = logging.getLogger(__name__)
class DensePoseEvalMode(str, Enum):
# use both masks and geodesic distances (GPS * IOU) to compute scores
GPSM = "gpsm"
# use only geodesic distances (GPS) to compute scores
GPS = "gps"
# use only masks (IOU) to compute scores
IOU = "iou"
class DensePoseDataMode(str, Enum):
# use estimated IUV data (default mode)
IUV_DT = "iuvdt"
# use ground truth IUV data
IUV_GT = "iuvgt"
# use ground truth labels I and set UV to 0
I_GT_UV_0 = "igtuv0"
# use ground truth labels I and estimated UV coordinates
I_GT_UV_DT = "igtuvdt"
# use estimated labels I and set UV to 0
I_DT_UV_0 = "idtuv0"
class DensePoseCocoEval:
# Interface for evaluating detection on the Microsoft COCO dataset.
#
# The usage for CocoEval is as follows:
# cocoGt=..., cocoDt=... # load dataset and results
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
# E.params.recThrs = ...; # set parameters as desired
# E.evaluate(); # run per image evaluation
# E.accumulate(); # accumulate per image results
# E.summarize(); # display summary metrics of results
# For example usage see evalDemo.m and http://mscoco.org/.
#
# The evaluation parameters are as follows (defaults in brackets):
# imgIds - [all] N img ids to use for evaluation
# catIds - [all] K cat ids to use for evaluation
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
# areaRng - [...] A=4 object area ranges for evaluation
# maxDets - [1 10 100] M=3 thresholds on max detections per image
# iouType - ['segm'] set iouType to 'segm', 'bbox', 'keypoints' or 'densepose'
# iouType replaced the now DEPRECATED useSegm parameter.
# useCats - [1] if true use category labels for evaluation
# Note: if useCats=0 category labels are ignored as in proposal scoring.
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
#
# evaluate(): evaluates detections on every image and every category and
# concats the results into the "evalImgs" with fields:
# dtIds - [1xD] id for each of the D detections (dt)
# gtIds - [1xG] id for each of the G ground truths (gt)
# dtMatches - [TxD] matching gt id at each IoU or 0
# gtMatches - [TxG] matching dt id at each IoU or 0
# dtScores - [1xD] confidence of each dt
# gtIgnore - [1xG] ignore flag for each gt
# dtIgnore - [TxD] ignore flag for each dt at each IoU
#
# accumulate(): accumulates the per-image, per-category evaluation
# results in "evalImgs" into the dictionary "eval" with fields:
# params - parameters used for evaluation
# date - date evaluation was performed
# counts - [T,R,K,A,M] parameter dimensions (see above)
# precision - [TxRxKxAxM] precision for every evaluation setting
# recall - [TxKxAxM] max recall for every evaluation setting
# Note: precision and recall==-1 for settings with no gt objects.
#
# See also coco, mask, pycocoDemo, pycocoEvalDemo
#
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
def __init__(
self,
cocoGt=None,
cocoDt=None,
iouType: str = "densepose",
multi_storage=None,
embedder=None,
dpEvalMode: DensePoseEvalMode = DensePoseEvalMode.GPS,
dpDataMode: DensePoseDataMode = DensePoseDataMode.IUV_DT,
):
"""
Initialize CocoEval using coco APIs for gt and dt
:param cocoGt: coco object with ground truth annotations
:param cocoDt: coco object with detection results
:return: None
"""
self.cocoGt = cocoGt # ground truth COCO API
self.cocoDt = cocoDt # detections COCO API
self.multi_storage = multi_storage
self.embedder = embedder
self._dpEvalMode = dpEvalMode
self._dpDataMode = dpDataMode
self.evalImgs = defaultdict(list) # per-image per-category eval results [KxAxI]
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iouType=iouType) # parameters
self._paramsEval = {} # parameters for evaluation
self.stats = [] # result summarization
self.ious = {} # ious between all gts and dts
if cocoGt is not None:
self.params.imgIds = sorted(cocoGt.getImgIds())
self.params.catIds = sorted(cocoGt.getCatIds())
self.ignoreThrBB = 0.7
self.ignoreThrUV = 0.9
def _loadGEval(self):
smpl_subdiv_fpath = PathManager.get_local_path(
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_subdiv.mat"
)
pdist_transform_fpath = PathManager.get_local_path(
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_SUBDIV_TRANSFORM.mat"
)
pdist_matrix_fpath = PathManager.get_local_path(
"https://dl.fbaipublicfiles.com/densepose/data/Pdist_matrix.pkl", timeout_sec=120
)
SMPL_subdiv = loadmat(smpl_subdiv_fpath)
self.PDIST_transform = loadmat(pdist_transform_fpath)
self.PDIST_transform = self.PDIST_transform["index"].squeeze()
UV = np.array([SMPL_subdiv["U_subdiv"], SMPL_subdiv["V_subdiv"]]).squeeze()
ClosestVertInds = np.arange(UV.shape[1]) + 1
self.Part_UVs = []
self.Part_ClosestVertInds = []
for i in np.arange(24):
self.Part_UVs.append(UV[:, SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)])
self.Part_ClosestVertInds.append(
ClosestVertInds[SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)]
)
with open(pdist_matrix_fpath, "rb") as hFile:
arrays = pickle.load(hFile, encoding="latin1")
self.Pdist_matrix = arrays["Pdist_matrix"]
self.Part_ids = np.array(SMPL_subdiv["Part_ID_subdiv"].squeeze())
# Mean geodesic distances for parts.
self.Mean_Distances = np.array([0, 0.351, 0.107, 0.126, 0.237, 0.173, 0.142, 0.128, 0.150])
# Coarse Part labels.
self.CoarseParts = np.array(
[0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8]
)
def _prepare(self):
"""
Prepare ._gts and ._dts for evaluation based on params
:return: None
"""
def _toMask(anns, coco):
# modify ann['segmentation'] by reference
for ann in anns:
# safeguard for invalid segmentation annotation;
# annotations containing empty lists exist in the posetrack
# dataset. This is not a correct segmentation annotation
# in terms of COCO format; we need to deal with it somehow
segm = ann["segmentation"]
if type(segm) == list and len(segm) == 0:
ann["segmentation"] = None
continue
rle = coco.annToRLE(ann)
ann["segmentation"] = rle
def _getIgnoreRegion(iid, coco):
img = coco.imgs[iid]
if "ignore_regions_x" not in img.keys():
return None
if len(img["ignore_regions_x"]) == 0:
return None
rgns_merged = [
[v for xy in zip(region_x, region_y) for v in xy]
for region_x, region_y in zip(img["ignore_regions_x"], img["ignore_regions_y"])
]
rles = maskUtils.frPyObjects(rgns_merged, img["height"], img["width"])
rle = maskUtils.merge(rles)
return maskUtils.decode(rle)
def _checkIgnore(dt, iregion):
if iregion is None:
return True
bb = np.array(dt["bbox"]).astype(int)
x1, y1, x2, y2 = bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3]
x2 = min([x2, iregion.shape[1]])
y2 = min([y2, iregion.shape[0]])
if bb[2] * bb[3] == 0:
return False
crop_iregion = iregion[y1:y2, x1:x2]
if crop_iregion.sum() == 0:
return True
if "densepose" not in dt.keys(): # filtering boxes
return crop_iregion.sum() / bb[2] / bb[3] < self.ignoreThrBB
# filtering UVs
ignoremask = np.require(crop_iregion, requirements=["F"])
mask = self._extract_mask(dt)
uvmask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"])
uvmask_ = maskUtils.encode(uvmask)
ignoremask_ = maskUtils.encode(ignoremask)
uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0]
return uviou < self.ignoreThrUV
p = self.params
if p.useCats:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
else:
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
imns = self.cocoGt.loadImgs(p.imgIds)
self.size_mapping = {}
for im in imns:
self.size_mapping[im["id"]] = [im["height"], im["width"]]
# if iouType == 'uv', add point gt annotations
if p.iouType == "densepose":
self._loadGEval()
# convert ground truth to mask if iouType == 'segm'
if p.iouType == "segm":
_toMask(gts, self.cocoGt)
_toMask(dts, self.cocoDt)
# set ignore flag
for gt in gts:
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"]
if p.iouType == "keypoints":
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"]
if p.iouType == "densepose":
gt["ignore"] = ("dp_x" in gt) == 0
if p.iouType == "segm":
gt["ignore"] = gt["segmentation"] is None
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self._igrgns = defaultdict(list)
for gt in gts:
iid = gt["image_id"]
if iid not in self._igrgns.keys():
self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt)
if _checkIgnore(gt, self._igrgns[iid]):
self._gts[iid, gt["category_id"]].append(gt)
for dt in dts:
iid = dt["image_id"]
if (iid not in self._igrgns) or _checkIgnore(dt, self._igrgns[iid]):
self._dts[iid, dt["category_id"]].append(dt)
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
self.eval = {} # accumulated evaluation results
def evaluate(self):
"""
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
"""
tic = time.time()
logger.info("Running per image DensePose evaluation... {}".format(self.params.iouType))
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
logger.info("useSegm (deprecated) is not None. Running DensePose evaluation")
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType in ["segm", "bbox"]:
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
elif p.iouType == "densepose":
computeIoU = self.computeOgps
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}:
self.real_ious = {
(imgId, catId): self.computeDPIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
self.ious = {
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds
}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
self.evalImgs = [
evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
logger.info("DensePose evaluation DONE (t={:0.2f}s).".format(toc - tic))
def getDensePoseMask(self, polys):
maskGen = np.zeros([256, 256])
stop = min(len(polys) + 1, 15)
for i in range(1, stop):
if polys[i - 1]:
currentMask = maskUtils.decode(polys[i - 1])
maskGen[currentMask > 0] = i
return maskGen
def _generate_rlemask_on_image(self, mask, imgId, data):
bbox_xywh = np.array(data["bbox"])
x, y, w, h = bbox_xywh
im_h, im_w = self.size_mapping[imgId]
im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
if mask is not None:
x0 = max(int(x), 0)
x1 = min(int(x + w), im_w, int(x) + mask.shape[1])
y0 = max(int(y), 0)
y1 = min(int(y + h), im_h, int(y) + mask.shape[0])
y = int(y)
x = int(x)
im_mask[y0:y1, x0:x1] = mask[y0 - y : y1 - y, x0 - x : x1 - x]
im_mask = np.require(np.asarray(im_mask > 0), dtype=np.uint8, requirements=["F"])
rle_mask = maskUtils.encode(np.array(im_mask[:, :, np.newaxis], order="F"))[0]
return rle_mask
def computeDPIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0 : p.maxDets[-1]]
gtmasks = []
for g in gt:
if DensePoseDataRelative.S_KEY in g:
# convert DensePose mask to a binary mask
mask = np.minimum(self.getDensePoseMask(g[DensePoseDataRelative.S_KEY]), 1.0)
_, _, w, h = g["bbox"]
scale_x = float(max(w, 1)) / mask.shape[1]
scale_y = float(max(h, 1)) / mask.shape[0]
mask = spzoom(mask, (scale_y, scale_x), order=1, prefilter=False)
mask = np.array(mask > 0.5, dtype=np.uint8)
rle_mask = self._generate_rlemask_on_image(mask, imgId, g)
elif "segmentation" in g:
segmentation = g["segmentation"]
if isinstance(segmentation, list) and segmentation:
# polygons
im_h, im_w = self.size_mapping[imgId]
rles = maskUtils.frPyObjects(segmentation, im_h, im_w)
rle_mask = maskUtils.merge(rles)
elif isinstance(segmentation, dict):
if isinstance(segmentation["counts"], list):
# uncompressed RLE
im_h, im_w = self.size_mapping[imgId]
rle_mask = maskUtils.frPyObjects(segmentation, im_h, im_w)
else:
# compressed RLE
rle_mask = segmentation
else:
rle_mask = self._generate_rlemask_on_image(None, imgId, g)
else:
rle_mask = self._generate_rlemask_on_image(None, imgId, g)
gtmasks.append(rle_mask)
dtmasks = []
for d in dt:
mask = self._extract_mask(d)
mask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"])
rle_mask = self._generate_rlemask_on_image(mask, imgId, d)
dtmasks.append(rle_mask)
# compute iou between each dt and gt region
iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
iousDP = maskUtils.iou(dtmasks, gtmasks, iscrowd)
return iousDP
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0 : p.maxDets[-1]]
if p.iouType == "segm":
g = [g["segmentation"] for g in gt if g["segmentation"] is not None]
d = [d["segmentation"] for d in dt if d["segmentation"] is not None]
elif p.iouType == "bbox":
g = [g["bbox"] for g in gt]
d = [d["bbox"] for d in dt]
else:
raise Exception("unknown iouType for iou computation")
# compute iou between each dt and gt region
iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
return ious
def computeOks(self, imgId, catId):
p = self.params
# dimension here should be Nxm
gts = self._gts[imgId, catId]
dts = self._dts[imgId, catId]
inds = np.argsort([-d["score"] for d in dts], kind="mergesort")
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0 : p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(gts) == 0 or len(dts) == 0:
return []
ious = np.zeros((len(dts), len(gts)))
sigmas = (
np.array(
[
0.26,
0.25,
0.25,
0.35,
0.35,
0.79,
0.79,
0.72,
0.72,
0.62,
0.62,
1.07,
1.07,
0.87,
0.87,
0.89,
0.89,
]
)
/ 10.0
)
vars = (sigmas * 2) ** 2
k = len(sigmas)
# compute oks between each detection and ground truth object
for j, gt in enumerate(gts):
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt["keypoints"])
xg = g[0::3]
yg = g[1::3]
vg = g[2::3]
k1 = np.count_nonzero(vg > 0)
bb = gt["bbox"]
x0 = bb[0] - bb[2]
x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]
y1 = bb[1] + bb[3] * 2
for i, dt in enumerate(dts):
d = np.array(dt["keypoints"])
xd = d[0::3]
yd = d[1::3]
if k1 > 0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros(k)
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)
e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2
if k1 > 0:
e = e[vg > 0]
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
return ious
def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray:
if "densepose" in dt:
densepose_results_quantized = dt["densepose"]
return densepose_results_quantized.labels_uv_uint8[0].numpy()
elif "cse_mask" in dt:
return dt["cse_mask"]
elif "coarse_segm" in dt:
dy = max(int(dt["bbox"][3]), 1)
dx = max(int(dt["bbox"][2]), 1)
return (
F.interpolate(
dt["coarse_segm"].unsqueeze(0),
(dy, dx),
mode="bilinear",
align_corners=False,
)
.squeeze(0)
.argmax(0)
.numpy()
.astype(np.uint8)
)
elif "record_id" in dt:
assert (
self.multi_storage is not None
), f"Storage record id encountered in a detection {dt}, but no storage provided!"
record = self.multi_storage.get(dt["rank"], dt["record_id"])
coarse_segm = record["coarse_segm"]
dy = max(int(dt["bbox"][3]), 1)
dx = max(int(dt["bbox"][2]), 1)
return (
F.interpolate(
coarse_segm.unsqueeze(0),
(dy, dx),
mode="bilinear",
align_corners=False,
)
.squeeze(0)
.argmax(0)
.numpy()
.astype(np.uint8)
)
else:
raise Exception(f"No mask data in the detection: {dt}")
raise ValueError('The prediction dict needs to contain either "densepose" or "cse_mask"')
def _extract_iuv(
self, densepose_data: np.ndarray, py: np.ndarray, px: np.ndarray, gt: Dict[str, Any]
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Extract arrays of I, U and V values at given points as numpy arrays
given the data mode stored in self._dpDataMode
"""
if self._dpDataMode == DensePoseDataMode.IUV_DT:
# estimated labels and UV (default)
ipoints = densepose_data[0, py, px]
upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255.
vpoints = densepose_data[2, py, px] / 255.0
elif self._dpDataMode == DensePoseDataMode.IUV_GT:
# ground truth
ipoints = np.array(gt["dp_I"])
upoints = np.array(gt["dp_U"])
vpoints = np.array(gt["dp_V"])
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_0:
# ground truth labels, UV = 0
ipoints = np.array(gt["dp_I"])
upoints = upoints * 0.0
vpoints = vpoints * 0.0
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_DT:
# ground truth labels, estimated UV
ipoints = np.array(gt["dp_I"])
upoints = densepose_data[1, py, px] / 255.0 # convert from uint8 by /255.
vpoints = densepose_data[2, py, px] / 255.0
elif self._dpDataMode == DensePoseDataMode.I_DT_UV_0:
# estimated labels, UV = 0
ipoints = densepose_data[0, py, px]
upoints = upoints * 0.0
vpoints = vpoints * 0.0
else:
raise ValueError(f"Unknown data mode: {self._dpDataMode}")
return ipoints, upoints, vpoints
def computeOgps_single_pair(self, dt, gt, py, px, pt_mask):
if "densepose" in dt:
ipoints, upoints, vpoints = self.extract_iuv_from_quantized(dt, gt, py, px, pt_mask)
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
elif "u" in dt:
ipoints, upoints, vpoints = self.extract_iuv_from_raw(dt, gt, py, px, pt_mask)
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
elif "record_id" in dt:
assert (
self.multi_storage is not None
), f"Storage record id encountered in detection {dt}, but no storage provided!"
record = self.multi_storage.get(dt["rank"], dt["record_id"])
record["bbox"] = dt["bbox"]
if "u" in record:
ipoints, upoints, vpoints = self.extract_iuv_from_raw(record, gt, py, px, pt_mask)
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints)
elif "embedding" in record:
return self.computeOgps_single_pair_cse(
dt,
gt,
py,
px,
pt_mask,
record["coarse_segm"],
record["embedding"],
record["bbox"],
)
else:
raise Exception(f"Unknown record format: {record}")
elif "embedding" in dt:
return self.computeOgps_single_pair_cse(
dt, gt, py, px, pt_mask, dt["coarse_segm"], dt["embedding"], dt["bbox"]
)
raise Exception(f"Unknown detection format: {dt}")
def extract_iuv_from_quantized(self, dt, gt, py, px, pt_mask):
densepose_results_quantized = dt["densepose"]
ipoints, upoints, vpoints = self._extract_iuv(
densepose_results_quantized.labels_uv_uint8.numpy(), py, px, gt
)
ipoints[pt_mask == -1] = 0
return ipoints, upoints, vpoints
def extract_iuv_from_raw(self, dt, gt, py, px, pt_mask):
labels_dt = resample_fine_and_coarse_segm_tensors_to_bbox(
dt["fine_segm"].unsqueeze(0),
dt["coarse_segm"].unsqueeze(0),
dt["bbox"],
)
uv = resample_uv_tensors_to_bbox(
dt["u"].unsqueeze(0), dt["v"].unsqueeze(0), labels_dt.squeeze(0), dt["bbox"]
)
labels_uv_uint8 = torch.cat((labels_dt.byte(), (uv * 255).clamp(0, 255).byte()))
ipoints, upoints, vpoints = self._extract_iuv(labels_uv_uint8.numpy(), py, px, gt)
ipoints[pt_mask == -1] = 0
return ipoints, upoints, vpoints
def computeOgps_single_pair_iuv(self, dt, gt, ipoints, upoints, vpoints):
cVertsGT, ClosestVertsGTTransformed = self.findAllClosestVertsGT(gt)
cVerts = self.findAllClosestVertsUV(upoints, vpoints, ipoints)
# Get pairwise geodesic distances between gt and estimated mesh points.
dist = self.getDistancesUV(ClosestVertsGTTransformed, cVerts)
# Compute the Ogps measure.
# Find the mean geodesic normalization distance for
# each GT point, based on which part it is on.
Current_Mean_Distances = self.Mean_Distances[
self.CoarseParts[self.Part_ids[cVertsGT[cVertsGT > 0].astype(int) - 1]]
]
return dist, Current_Mean_Distances
def computeOgps_single_pair_cse(
self, dt, gt, py, px, pt_mask, coarse_segm, embedding, bbox_xywh_abs
):
# 0-based mesh vertex indices
cVertsGT = torch.as_tensor(gt["dp_vertex"], dtype=torch.int64)
# label for each pixel of the bbox, [H, W] tensor of long
labels_dt = resample_coarse_segm_tensor_to_bbox(
coarse_segm.unsqueeze(0), bbox_xywh_abs
).squeeze(0)
x, y, w, h = bbox_xywh_abs
# embedding for each pixel of the bbox, [D, H, W] tensor of float32
embedding = F.interpolate(
embedding.unsqueeze(0), (int(h), int(w)), mode="bilinear", align_corners=False
).squeeze(0)
# valid locations py, px
py_pt = torch.from_numpy(py[pt_mask > -1])
px_pt = torch.from_numpy(px[pt_mask > -1])
cVerts = torch.ones_like(cVertsGT) * -1
cVerts[pt_mask > -1] = self.findClosestVertsCse(
embedding, py_pt, px_pt, labels_dt, gt["ref_model"]
)
# Get pairwise geodesic distances between gt and estimated mesh points.
dist = self.getDistancesCse(cVertsGT, cVerts, gt["ref_model"])
# normalize distances
if (gt["ref_model"] == "smpl_27554") and ("dp_I" in gt):
Current_Mean_Distances = self.Mean_Distances[
self.CoarseParts[np.array(gt["dp_I"], dtype=int)]
]
else:
Current_Mean_Distances = 0.255
return dist, Current_Mean_Distances
def computeOgps(self, imgId, catId):
p = self.params
# dimension here should be Nxm
g = self._gts[imgId, catId]
d = self._dts[imgId, catId]
inds = np.argsort([-d_["score"] for d_ in d], kind="mergesort")
d = [d[i] for i in inds]
if len(d) > p.maxDets[-1]:
d = d[0 : p.maxDets[-1]]
# if len(gts) == 0 and len(dts) == 0:
if len(g) == 0 or len(d) == 0:
return []
ious = np.zeros((len(d), len(g)))
# compute opgs between each detection and ground truth object
# sigma = self.sigma #0.255 # dist = 0.3m corresponds to ogps = 0.5
# 1 # dist = 0.3m corresponds to ogps = 0.96
# 1.45 # dist = 1.7m (person height) corresponds to ogps = 0.5)
for j, gt in enumerate(g):
if not gt["ignore"]:
g_ = gt["bbox"]
for i, dt in enumerate(d):
#
dy = int(dt["bbox"][3])
dx = int(dt["bbox"][2])
dp_x = np.array(gt["dp_x"]) * g_[2] / 255.0
dp_y = np.array(gt["dp_y"]) * g_[3] / 255.0
py = (dp_y + g_[1] - dt["bbox"][1]).astype(int)
px = (dp_x + g_[0] - dt["bbox"][0]).astype(int)
#
pts = np.zeros(len(px))
pts[px >= dx] = -1
pts[py >= dy] = -1
pts[px < 0] = -1
pts[py < 0] = -1
if len(pts) < 1:
ogps = 0.0
elif np.max(pts) == -1:
ogps = 0.0
else:
px[pts == -1] = 0
py[pts == -1] = 0
dists_between_matches, dist_norm_coeffs = self.computeOgps_single_pair(
dt, gt, py, px, pts
)
# Compute gps
ogps_values = np.exp(
-(dists_between_matches**2) / (2 * (dist_norm_coeffs**2))
)
#
ogps = np.mean(ogps_values) if len(ogps_values) > 0 else 0.0
ious[i, j] = ogps
gbb = [gt["bbox"] for gt in g]
dbb = [dt["bbox"] for dt in d]
# compute iou between each dt and gt region
iscrowd = [int(o.get("iscrowd", 0)) for o in g]
ious_bb = maskUtils.iou(dbb, gbb, iscrowd)
return ious, ious_bb
def evaluateImg(self, imgId, catId, aRng, maxDet):
"""
perform evaluation for single category and image
:return: dict (single image results)
"""
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return None
for g in gt:
# g['_ignore'] = g['ignore']
if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]):
g["_ignore"] = True
else:
g["_ignore"] = False
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o.get("iscrowd", 0)) for o in gt]
# load computed ious
if p.iouType == "densepose":
# print('Checking the length', len(self.ious[imgId, catId]))
# if len(self.ious[imgId, catId]) == 0:
# print(self.ious[imgId, catId])
ious = (
self.ious[imgId, catId][0][:, gtind]
if len(self.ious[imgId, catId]) > 0
else self.ious[imgId, catId]
)
ioubs = (
self.ious[imgId, catId][1][:, gtind]
if len(self.ious[imgId, catId]) > 0
else self.ious[imgId, catId]
)
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}:
iousM = (
self.real_ious[imgId, catId][:, gtind]
if len(self.real_ious[imgId, catId]) > 0
else self.real_ious[imgId, catId]
)
else:
ious = (
self.ious[imgId, catId][:, gtind]
if len(self.ious[imgId, catId]) > 0
else self.ious[imgId, catId]
)
T = len(p.iouThrs)
G = len(gt)
D = len(dt)
gtm = np.zeros((T, G))
dtm = np.zeros((T, D))
gtIg = np.array([g["_ignore"] for g in gt])
dtIg = np.zeros((T, D))
if np.all(gtIg) and p.iouType == "densepose":
dtIg = np.logical_or(dtIg, True)
if len(ious) > 0: # and not p.iouType == 'densepose':
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, _g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
break
if p.iouType == "densepose":
if self._dpEvalMode == DensePoseEvalMode.GPSM:
new_iou = np.sqrt(iousM[dind, gind] * ious[dind, gind])
elif self._dpEvalMode == DensePoseEvalMode.IOU:
new_iou = iousM[dind, gind]
elif self._dpEvalMode == DensePoseEvalMode.GPS:
new_iou = ious[dind, gind]
else:
new_iou = ious[dind, gind]
if new_iou < iou:
continue
if new_iou == 0.0:
continue
# if match successful and best so far, store appropriately
iou = new_iou
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dtIg[tind, dind] = gtIg[m]
dtm[tind, dind] = gt[m]["id"]
gtm[tind, m] = d["id"]
if p.iouType == "densepose":
if not len(ioubs) == 0:
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
if dtm[tind, dind] == 0:
ioub = 0.8
m = -1
for gind, _g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# continue to next gt unless better match made
if ioubs[dind, gind] < ioub:
continue
# if match successful and best so far, store appropriately
ioub = ioubs[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m > -1:
dtIg[:, dind] = gtIg[m]
if gtIg[m]:
dtm[tind, dind] = gt[m]["id"]
gtm[tind, m] = d["id"]
# set unmatched detections outside of area range to ignore
a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape((1, len(dt)))
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0)))
# store results for given image and category
# print('Done with the function', len(self.ious[imgId, catId]))
return {
"image_id": imgId,
"category_id": catId,
"aRng": aRng,
"maxDet": maxDet,
"dtIds": [d["id"] for d in dt],
"gtIds": [g["id"] for g in gt],
"dtMatches": dtm,
"gtMatches": gtm,
"dtScores": [d["score"] for d in dt],
"gtIgnore": gtIg,
"dtIgnore": dtIg,
}
def accumulate(self, p=None):
"""
Accumulate per image evaluation results and store the result in self.eval
:param p: input params for evaluation
:return: None
"""
logger.info("Accumulating evaluation results...")
tic = time.time()
if not self.evalImgs:
logger.info("Please run evaluate() first")
# allows input customized parameters
if p is None:
p = self.params
p.catIds = p.catIds if p.useCats == 1 else [-1]
T = len(p.iouThrs)
R = len(p.recThrs)
K = len(p.catIds) if p.useCats else 1
A = len(p.areaRng)
M = len(p.maxDets)
precision = -(np.ones((T, R, K, A, M))) # -1 for the precision of absent categories
recall = -(np.ones((T, K, A, M)))
# create dictionary for future indexing
logger.info("Categories: {}".format(p.catIds))
_pe = self._paramsEval
catIds = _pe.catIds if _pe.useCats else [-1]
setK = set(catIds)
setA = set(map(tuple, _pe.areaRng))
setM = set(_pe.maxDets)
setI = set(_pe.imgIds)
# get inds to evaluate
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
I0 = len(_pe.imgIds)
A0 = len(_pe.areaRng)
# retrieve E at each category, area range, and max number of detections
for k, k0 in enumerate(k_list):
Nk = k0 * A0 * I0
for a, a0 in enumerate(a_list):
Na = a0 * I0
for m, maxDet in enumerate(m_list):
E = [self.evalImgs[Nk + Na + i] for i in i_list]
E = [e for e in E if e is not None]
if len(E) == 0:
continue
dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E])
# different sorting method generates slightly different results.
# mergesort is used to be consistent as Matlab implementation.
inds = np.argsort(-dtScores, kind="mergesort")
dtm = np.concatenate([e["dtMatches"][:, 0:maxDet] for e in E], axis=1)[:, inds]
dtIg = np.concatenate([e["dtIgnore"][:, 0:maxDet] for e in E], axis=1)[:, inds]
gtIg = np.concatenate([e["gtIgnore"] for e in E])
npig = np.count_nonzero(gtIg == 0)
if npig == 0:
continue
tps = np.logical_and(dtm, np.logical_not(dtIg))
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
nd = len(tp)
rc = tp / npig
pr = tp / (fp + tp + np.spacing(1))
q = np.zeros((R,))
if nd:
recall[t, k, a, m] = rc[-1]
else:
recall[t, k, a, m] = 0
# numpy is slow without cython optimization for accessing elements
# use python array gets significant speed improvement
pr = pr.tolist()
q = q.tolist()
for i in range(nd - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
inds = np.searchsorted(rc, p.recThrs, side="left")
try:
for ri, pi in enumerate(inds):
q[ri] = pr[pi]
except Exception:
pass
precision[t, :, k, a, m] = np.array(q)
logger.info(
"Final: max precision {}, min precision {}".format(np.max(precision), np.min(precision))
)
self.eval = {
"params": p,
"counts": [T, R, K, A, M],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
}
toc = time.time()
logger.info("DONE (t={:0.2f}s).".format(toc - tic))
def summarize(self):
"""
Compute and display summary metrics for evaluation results.
Note this function can *only* be applied on the default parameter setting
"""
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
p = self.params
iStr = " {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
titleStr = "Average Precision" if ap == 1 else "Average Recall"
typeStr = "(AP)" if ap == 1 else "(AR)"
measure = "IoU"
if self.params.iouType == "keypoints":
measure = "OKS"
elif self.params.iouType == "densepose":
measure = "OGPS"
iouStr = (
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
if iouThr is None
else "{:0.2f}".format(iouThr)
)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval["precision"]
# IoU
if iouThr is not None:
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval["recall"]
if iouThr is not None:
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0]
s = s[t]
s = s[:, :, aind, mind]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
logger.info(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s))
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1)
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2])
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2])
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2])
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2])
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2])
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2])
return stats
def _summarizeKps():
stats = np.zeros((10,))
stats[0] = _summarize(1, maxDets=20)
stats[1] = _summarize(1, maxDets=20, iouThr=0.5)
stats[2] = _summarize(1, maxDets=20, iouThr=0.75)
stats[3] = _summarize(1, maxDets=20, areaRng="medium")
stats[4] = _summarize(1, maxDets=20, areaRng="large")
stats[5] = _summarize(0, maxDets=20)
stats[6] = _summarize(0, maxDets=20, iouThr=0.5)
stats[7] = _summarize(0, maxDets=20, iouThr=0.75)
stats[8] = _summarize(0, maxDets=20, areaRng="medium")
stats[9] = _summarize(0, maxDets=20, areaRng="large")
return stats
def _summarizeUvs():
stats = [_summarize(1, maxDets=self.params.maxDets[0])]
min_threshold = self.params.iouThrs.min()
if min_threshold <= 0.201:
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.2)]
if min_threshold <= 0.301:
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.3)]
if min_threshold <= 0.401:
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.4)]
stats += [
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5),
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75),
_summarize(1, maxDets=self.params.maxDets[0], areaRng="medium"),
_summarize(1, maxDets=self.params.maxDets[0], areaRng="large"),
_summarize(0, maxDets=self.params.maxDets[0]),
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5),
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75),
_summarize(0, maxDets=self.params.maxDets[0], areaRng="medium"),
_summarize(0, maxDets=self.params.maxDets[0], areaRng="large"),
]
return np.array(stats)
def _summarizeUvsOld():
stats = np.zeros((18,))
stats[0] = _summarize(1, maxDets=self.params.maxDets[0])
stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5)
stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.55)
stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.60)
stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.65)
stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.70)
stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75)
stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.80)
stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.85)
stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.90)
stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.95)
stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium")
stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="large")
stats[13] = _summarize(0, maxDets=self.params.maxDets[0])
stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5)
stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75)
stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium")
stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="large")
return stats
if not self.eval:
raise Exception("Please run accumulate() first")
iouType = self.params.iouType
if iouType in ["segm", "bbox"]:
summarize = _summarizeDets
elif iouType in ["keypoints"]:
summarize = _summarizeKps
elif iouType in ["densepose"]:
summarize = _summarizeUvs
self.stats = summarize()
def __str__(self):
self.summarize()
# ================ functions for dense pose ==============================
def findAllClosestVertsUV(self, U_points, V_points, Index_points):
ClosestVerts = np.ones(Index_points.shape) * -1
for i in np.arange(24):
#
if (i + 1) in Index_points:
UVs = np.array(
[U_points[Index_points == (i + 1)], V_points[Index_points == (i + 1)]]
)
Current_Part_UVs = self.Part_UVs[i]
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i]
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze()
ClosestVerts[Index_points == (i + 1)] = Current_Part_ClosestVertInds[
np.argmin(D, axis=0)
]
ClosestVertsTransformed = self.PDIST_transform[ClosestVerts.astype(int) - 1]
ClosestVertsTransformed[ClosestVerts < 0] = 0
return ClosestVertsTransformed
def findClosestVertsCse(self, embedding, py, px, mask, mesh_name):
mesh_vertex_embeddings = self.embedder(mesh_name)
pixel_embeddings = embedding[:, py, px].t().to(device="cuda")
mask_vals = mask[py, px]
edm = squared_euclidean_distance_matrix(pixel_embeddings, mesh_vertex_embeddings)
vertex_indices = edm.argmin(dim=1).cpu()
vertex_indices[mask_vals <= 0] = -1
return vertex_indices
def findAllClosestVertsGT(self, gt):
#
I_gt = np.array(gt["dp_I"])
U_gt = np.array(gt["dp_U"])
V_gt = np.array(gt["dp_V"])
#
# print(I_gt)
#
ClosestVertsGT = np.ones(I_gt.shape) * -1
for i in np.arange(24):
if (i + 1) in I_gt:
UVs = np.array([U_gt[I_gt == (i + 1)], V_gt[I_gt == (i + 1)]])
Current_Part_UVs = self.Part_UVs[i]
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i]
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze()
ClosestVertsGT[I_gt == (i + 1)] = Current_Part_ClosestVertInds[np.argmin(D, axis=0)]
#
ClosestVertsGTTransformed = self.PDIST_transform[ClosestVertsGT.astype(int) - 1]
ClosestVertsGTTransformed[ClosestVertsGT < 0] = 0
return ClosestVertsGT, ClosestVertsGTTransformed
def getDistancesCse(self, cVertsGT, cVerts, mesh_name):
geodists_vertices = torch.ones_like(cVertsGT) * float("inf")
selected = (cVertsGT >= 0) * (cVerts >= 0)
mesh = create_mesh(mesh_name, "cpu")
geodists_vertices[selected] = mesh.geodists[cVertsGT[selected], cVerts[selected]]
return geodists_vertices.numpy()
def getDistancesUV(self, cVertsGT, cVerts):
#
n = 27554
dists = []
for d in range(len(cVertsGT)):
if cVertsGT[d] > 0:
if cVerts[d] > 0:
i = cVertsGT[d] - 1
j = cVerts[d] - 1
if j == i:
dists.append(0)
elif j > i:
ccc = i
i = j
j = ccc
i = n - i - 1
j = n - j - 1
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1
k = (n * n - n) / 2 - k - 1
dists.append(self.Pdist_matrix[int(k)][0])
else:
i = n - i - 1
j = n - j - 1
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1
k = (n * n - n) / 2 - k - 1
dists.append(self.Pdist_matrix[int(k)][0])
else:
dists.append(np.inf)
return np.atleast_1d(np.array(dists).squeeze())
class Params:
"""
Params for coco evaluation api
"""
def setDetParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
self.maxDets = [1, 10, 100]
self.areaRng = [
[0**2, 1e5**2],
[0**2, 32**2],
[32**2, 96**2],
[96**2, 1e5**2],
]
self.areaRngLbl = ["all", "small", "medium", "large"]
self.useCats = 1
def setKpParams(self):
self.imgIds = []
self.catIds = []
# np.arange causes trouble. the data point on arange is slightly larger than the true value
self.iouThrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True)
self.recThrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True)
self.maxDets = [20]
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]]
self.areaRngLbl = ["all", "medium", "large"]
self.useCats = 1
def setUvParams(self):
self.imgIds = []
self.catIds = []
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
self.maxDets = [20]
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]]
self.areaRngLbl = ["all", "medium", "large"]
self.useCats = 1
def __init__(self, iouType="segm"):
if iouType == "segm" or iouType == "bbox":
self.setDetParams()
elif iouType == "keypoints":
self.setKpParams()
elif iouType == "densepose":
self.setUvParams()
else:
raise Exception("iouType not supported")
self.iouType = iouType
# useSegm is deprecated
self.useSegm = None