Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import packages
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from utils import load_file, plot_similarity_scores
|
5 |
+
from constants import StreamlitException
|
6 |
+
|
7 |
+
from nlp import (
|
8 |
+
clean_text, split_text, summarize_text,
|
9 |
+
extract_person_names_and_email, extract_tech_skills,
|
10 |
+
calculate_similarity, qna_query, lang_model
|
11 |
+
)
|
12 |
+
|
13 |
+
from constants import API_TOKEN, VESRION
|
14 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = API_TOKEN
|
15 |
+
|
16 |
+
def process_exception(e):
|
17 |
+
st.error(e.message)
|
18 |
+
st.stop()
|
19 |
+
|
20 |
+
|
21 |
+
if __name__ == "__main__":
|
22 |
+
# Set page width to a larger size
|
23 |
+
st.set_page_config(layout="wide")
|
24 |
+
|
25 |
+
# Streamlit app UI
|
26 |
+
st.write(
|
27 |
+
"""<h1 style='display: inline-block; color: black;'>ResuMate.IO</h1>
|
28 |
+
<h3 style='display: inline-block; color: grey'>π Transforming the recruitment and staffing experience through Generative AI </h3>""",
|
29 |
+
unsafe_allow_html=True
|
30 |
+
)
|
31 |
+
st.write("")
|
32 |
+
st.write("")
|
33 |
+
|
34 |
+
st.sidebar.write("")
|
35 |
+
with st.sidebar.expander("π€ About", expanded=False):
|
36 |
+
st.write("This app is powered by free and open-source **Langchain** and **LLM technology**.")
|
37 |
+
st.write("Developed by **[Chandramauli Chaudhuri](https://www.linkedin.com/in/chandramaulic/)**.")
|
38 |
+
st.write("")
|
39 |
+
st.write(f"Version **{VESRION}**.")
|
40 |
+
|
41 |
+
# Upload a file, share job description and summarize its content
|
42 |
+
#st.sidebar.write("")
|
43 |
+
st.sidebar.header("User Inputs")
|
44 |
+
#st.sidebar.write("")
|
45 |
+
job_description_raw = st.sidebar.text_area("Enter the job description:")
|
46 |
+
#st.sidebar.write("")
|
47 |
+
job_description = clean_text(job_description_raw)
|
48 |
+
#st.write("")
|
49 |
+
|
50 |
+
uploaded_file = st.sidebar.file_uploader("Upload a resume:", type=["docx", "pdf", "ppt", "pptx"])
|
51 |
+
#st.sidebar.write("")
|
52 |
+
|
53 |
+
# Spinner set-up
|
54 |
+
with st.spinner("Details loading, please wait.."):
|
55 |
+
if uploaded_file is not None:
|
56 |
+
load_file_result = load_file(st, uploaded_file)
|
57 |
+
if type(load_file_result) is StreamlitException:
|
58 |
+
process_exception(load_file_result)
|
59 |
+
else:
|
60 |
+
resume_text_raw, lang_loader = load_file_result
|
61 |
+
|
62 |
+
resume_text = clean_text(resume_text_raw)
|
63 |
+
doc = lang_model(resume_text)
|
64 |
+
|
65 |
+
st.subheader("π Overview")
|
66 |
+
st.write("")
|
67 |
+
|
68 |
+
# Set up candidate name & email extraction
|
69 |
+
person_names, emails = extract_person_names_and_email(resume_text)
|
70 |
+
st.write("**Candidate's name:** " + ", ".join(person_names))
|
71 |
+
st.write("")
|
72 |
+
st.write("**Candidate's email address:** " + ", ".join(emails))
|
73 |
+
st.write("")
|
74 |
+
|
75 |
+
# Set up job description summarization
|
76 |
+
summarization_result = summarize_text(job_description)
|
77 |
+
if type(summarization_result) is StreamlitException:
|
78 |
+
process_exception(summarization_result)
|
79 |
+
else:
|
80 |
+
st.write("**Job description summary:** " + summarization_result)
|
81 |
+
st.write("")
|
82 |
+
|
83 |
+
# Set up resume summarization
|
84 |
+
summarization_result = summarize_text(resume_text)
|
85 |
+
if type(summarization_result) is StreamlitException:
|
86 |
+
process_exception(summarization_result)
|
87 |
+
else:
|
88 |
+
st.write("**Candidate's resume summary:** " + summarization_result)
|
89 |
+
st.write("")
|
90 |
+
|
91 |
+
st.write("")
|
92 |
+
st.subheader("π Fitment")
|
93 |
+
st.write("")
|
94 |
+
|
95 |
+
# Set up technical skill extraction
|
96 |
+
st.write("**Candidate's key technical skills:** " + ", ".join(extract_tech_skills(doc)))
|
97 |
+
st.write("")
|
98 |
+
|
99 |
+
# Set up percentage match calculation
|
100 |
+
st.write("**Percentage match between job description and candidate's resume:** " + f"{calculate_similarity(job_description, resume_text):.2f}%" + "\n")
|
101 |
+
st.write("")
|
102 |
+
|
103 |
+
# Set up percentage match calculation at sentence level
|
104 |
+
job_description_phrases = split_text(job_description)
|
105 |
+
resume_phrases = split_text(resume_text)
|
106 |
+
st.write('**Percentage resume match against TOP 10 job description items:**')
|
107 |
+
if job_description_raw != '':
|
108 |
+
fig = plot_similarity_scores(job_description_phrases, resume_phrases)
|
109 |
+
st.plotly_chart(fig, use_container_width=True)
|
110 |
+
|
111 |
+
# Set up user Q&A
|
112 |
+
user_input = st.sidebar.text_input("Ask any other resume-related questions:", "")
|
113 |
+
if user_input:
|
114 |
+
answer = qna_query(lang_loader, user_input)
|
115 |
+
st.sidebar.write(answer)
|