prosalign / app.py
clr's picture
Update app.py
3cb3592
raw
history blame
3.72 kB
import gradio as gr
import subprocess,os
from datasets import load_dataset, Audio
import datas,ctcalign,graph
from numpy import random
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def setup():
r0 = subprocess.run(["pwd"], capture_output=True, text=True)
print('PWD::', r0.stdout)
r1 = subprocess.run(["wget", "https://github.com/google/REAPER/archive/refs/heads/master.zip"], capture_output=True, text=True)
print(r1.stdout)
subprocess.run(["unzip", "./master.zip"])
subprocess.run(["mv", "REAPER-master", "REAPER"])
subprocess.run(["rm", "./master.zip"])
os.chdir('./REAPER')
subprocess.run(["mkdir", "build"])
os.chdir('./build')
r2 = subprocess.run(["cmake", ".."], capture_output=True, text=True)
print(r2.stdout)
r3 = subprocess.run(["make"], capture_output=True, text=True)
print(r3.stdout)
os.chdir('../..')
r9 = subprocess.run(["ls", "-la"], capture_output=True, text=True)
print('LS::', r9.stdout)
#print('about to setup')
setup()
def load_lang(langname):
if langname=="Icelandic":
df = datas.ds_i
lang_aligner = datas.a_i
elif langname =="Faroese":
df = datas.ds_f
lang_aligner = datas.a_f
df = df.data.to_pandas()
df = df.drop(columns=['audio', 'speaker_id','duration'])
return (df[:15], lang_aligner) #(df, df[:50])
def f1(langname,lang_aligner):
if langname=="Icelandic":
ds = datas.ds_i
elif langname =="Faroese":
ds = datas.ds_f
#fig = plt.figure(figsize=(10,4))
#plt.axline((0,0),slope=1,color="darkgray")
#plt.xlabel("Vowel length (ms)")
#plt.ylabel("Consonant length (ms)")
maxdat=len(ds)
ds = ds.select([random.randint(maxdat-1)])
#print([th for th in ds.sample()])
sound_path = ds['audio'][0]['path'] # audio 0 array is the audio data itself
transcript = ds['normalized_text'][0]
#print('PLACE A:',lang_aligner)
return (graph.align_and_graph(sound_path,transcript,lang_aligner),sound_path)
bl = gr.Blocks()
with bl:
lloadr = gr.Dropdown(["Faroese", "Icelandic"], label="Select a language")#, info="Loading the dataset takes some time")
align_func = gr.State()#value=ctcalign.aligner(model_path="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h",model_word_separator = '|',model_blank_token = '[PAD]'))
with gr.Row():
#invisidata = gr.DataFrame(interactive=False, visible=False)
databrowser = gr.DataFrame(wrap=True, max_rows=50, interactive=False, overflow_row_behaviour='paginate')
with gr.Row():
btn1 = gr.Button(value="The random prosody button")
btn1.style(full_width=False, size="sm")
audio1 = gr.Audio(interactive=False)
pl1 = gr.Plot()
btn1.click(f1, [lloadr,align_func], [pl1,audio1])
lloadr.change(load_lang,lloadr,[databrowser,align_func])
gr.Markdown(
"""
# ABOUT
This is a work-in-progress demo.
Icelandic uses the [samromur-asr](https://huggingface.co/datasets/language-and-voice-lab/samromur_asr) corpus, and Faroese uses [ravnursson-asr](https://huggingface.co/datasets/carlosdanielhernandezmena/ravnursson_asr).
After you select a language, a few example sentences from the corpus are displayed.
Click the button to view time-aligned prosody information for a random sentence - this could be any sentence, not only one of the ones shown above.
[ABOUT REAPER PITCH TRACKING - TODO]
[ABOUT RMSE INTENSITY - TODO]
[ABOUT CTC ALIGNMENT - TODO]
caitlinr@ru.is / https://github.com/catiR/
"""
)
if __name__ == "__main__":
bl.launch()