catiR
commited on
Commit
·
0d67145
1
Parent(s):
a894787
run clustering
Browse files- app.py +3 -3
- scripts/clusterprosody.py +102 -7
- scripts/runSQ.py +3 -3
app.py
CHANGED
@@ -33,9 +33,9 @@ setup()
|
|
33 |
|
34 |
def f1(voices, sent, indices):
|
35 |
#tts_audio, tts_score, graph = scripts.runSQ.run(sent, voices, indices)
|
36 |
-
tts_audio, tts_score,
|
37 |
score_report = f'Difference from TTS to real speech: {round(tts_score,2)}'
|
38 |
-
return (tts_audio, score_report,
|
39 |
|
40 |
|
41 |
def label_indices(sentence):
|
@@ -46,7 +46,7 @@ def label_indices(sentence):
|
|
46 |
|
47 |
|
48 |
|
49 |
-
temp_sentences = scripts.runSQ.
|
50 |
|
51 |
bl = gr.Blocks()
|
52 |
with bl:
|
|
|
33 |
|
34 |
def f1(voices, sent, indices):
|
35 |
#tts_audio, tts_score, graph = scripts.runSQ.run(sent, voices, indices)
|
36 |
+
tts_audio, tts_score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = scripts.runSQ.run(sent, [voices], indices)
|
37 |
score_report = f'Difference from TTS to real speech: {round(tts_score,2)}'
|
38 |
+
return (tts_audio, score_report, tts_fig_p, mid_fig_p, bad_fig_p)
|
39 |
|
40 |
|
41 |
def label_indices(sentence):
|
|
|
46 |
|
47 |
|
48 |
|
49 |
+
temp_sentences = scripts.runSQ.create_temp_sent_list()
|
50 |
|
51 |
bl = gr.Blocks()
|
52 |
with bl:
|
scripts/clusterprosody.py
CHANGED
@@ -302,16 +302,21 @@ def match_tts(clusters, speech_data, tts_data, tts_align, words, seg_aligns, voi
|
|
302 |
|
303 |
# now do graphs of matched_data with tts_data
|
304 |
# and report best_cluster_score
|
305 |
-
tts_fig = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
306 |
|
307 |
mid_cluster = tts_info[1][0]
|
308 |
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
|
309 |
bad_cluster = tts_info[2][0]
|
310 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
return best_cluster_score,
|
315 |
|
316 |
|
317 |
|
@@ -353,11 +358,11 @@ def cluster(norm_sent,orig_sent,h_spk_ids, h_align_dir, h_f0_dir, h_wav_dir, tts
|
|
353 |
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
|
354 |
|
355 |
# match the data with a cluster -----
|
356 |
-
best_cluster_score,
|
357 |
|
358 |
# only supports one voice at a time currently
|
359 |
-
return best_cluster_score,
|
360 |
-
#return words, kmedoids_cluster_dists,
|
361 |
|
362 |
|
363 |
|
@@ -526,6 +531,96 @@ def plot_pitch_cluster(speech_data,words,seg_aligns,cluster_id):
|
|
526 |
|
527 |
|
528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
# want to:
|
531 |
# - find tts best cluster
|
|
|
302 |
|
303 |
# now do graphs of matched_data with tts_data
|
304 |
# and report best_cluster_score
|
|
|
305 |
|
306 |
mid_cluster = tts_info[1][0]
|
307 |
mid_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==mid_cluster}
|
308 |
bad_cluster = tts_info[2][0]
|
309 |
bad_data = {f'{words}**{r}': speech_data[f'{words}**{r}'] for r,c in clusters if c==bad_cluster}
|
310 |
+
|
311 |
+
tts_fig_p = plot_pitch_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
312 |
+
fig_mid_p = plot_pitch_cluster(mid_data,words,seg_aligns,mid_cluster)
|
313 |
+
fig_bad_p = plot_pitch_cluster(bad_data,words,seg_aligns,bad_cluster)
|
314 |
+
|
315 |
+
tts_fig_e = plot_rmse_tts(matched_data,tts_data, tts_align, words,seg_aligns,best_cluster,voice)
|
316 |
+
fig_mid_e = plot_rmse_cluster(mid_data,words,seg_aligns,mid_cluster)
|
317 |
+
fig_bad_e = plot_rmse_cluster(bad_data,words,seg_aligns,bad_cluster)
|
318 |
|
319 |
+
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
320 |
|
321 |
|
322 |
|
|
|
358 |
tts_data, tts_align = get_tts_data(tdir,v,start_end_word_index)
|
359 |
|
360 |
# match the data with a cluster -----
|
361 |
+
best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e = match_tts(groups, data, tts_data, tts_align, words, seg_aligns,v)
|
362 |
|
363 |
# only supports one voice at a time currently
|
364 |
+
return best_cluster_score, tts_fig_p, fig_mid_p, fig_bad_p, tts_fig_e, fig_mid_e, fig_bad_e
|
365 |
+
#return words, kmedoids_cluster_dists, group
|
366 |
|
367 |
|
368 |
|
|
|
531 |
|
532 |
|
533 |
|
534 |
+
def plot_rmse_tts(speech_data,tts_data, tts_align,words,seg_aligns,cluster_id, voice):
|
535 |
+
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
536 |
+
cc = 0
|
537 |
+
fig = plt.figure(figsize=(10, 5))
|
538 |
+
plt.title(f"{words} - Energy - Cluster {cluster_id}")
|
539 |
+
for k,v in speech_data.items():
|
540 |
+
|
541 |
+
spk = k.split('**')[1]
|
542 |
+
|
543 |
+
word_times = seg_aligns[k]
|
544 |
+
|
545 |
+
rmse = [e for p,e in v]
|
546 |
+
# datapoint interval is 0.005 seconds
|
547 |
+
rmse_xvals = [x*0.005 for x in range(len(rmse))]
|
548 |
+
|
549 |
+
# centre around the first word boundary -
|
550 |
+
# if 3+ words, too bad.
|
551 |
+
if len(word_times)>1:
|
552 |
+
realign = np.mean([word_times[0][2],word_times[1][1]])
|
553 |
+
rmse_xvals = [x - realign for x in rmse_xvals]
|
554 |
+
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
555 |
+
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
556 |
+
|
557 |
+
if len(word_times)>2:
|
558 |
+
for i in range(1,len(word_times)-1):
|
559 |
+
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
560 |
+
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
561 |
+
|
562 |
+
plt.scatter(rmse_xvals, rmse, color=colors[cc], label=f"Speaker {spk}")
|
563 |
+
cc += 1
|
564 |
+
if cc >= len(colors):
|
565 |
+
cc=0
|
566 |
+
|
567 |
+
trmse = [e for p,e in tts_data]
|
568 |
+
t_xvals = [x*0.005 for x in range(len(trmse))]
|
569 |
+
|
570 |
+
if len(tts_align)>1:
|
571 |
+
realign = tts_align[1][1]
|
572 |
+
t_xvals = [x - realign for x in t_xvals]
|
573 |
+
tts_align = [(w,s-realign) for w,s in tts_align]
|
574 |
+
|
575 |
+
if len(tts_align)>2:
|
576 |
+
for i in range(2,len(tts_align)):
|
577 |
+
bound_line = tts_align[i][1]
|
578 |
+
plt.axvline(x=bound_line, color="black", linestyle='--', linewidth=1, label=f"TTS -> {tts_align[i][0]}")
|
579 |
+
plt.scatter(t_xvals, trmse, color="black", label=f"TTS {voice}")
|
580 |
+
|
581 |
+
|
582 |
+
#plt.legend()
|
583 |
+
#plt.show()
|
584 |
+
|
585 |
+
|
586 |
+
return fig
|
587 |
+
|
588 |
+
|
589 |
+
def plot_rmse_cluster(speech_data,words,seg_aligns,cluster_id):
|
590 |
+
colors = ["red", "green", "blue", "orange", "purple", "pink", "brown", "gray", "cyan"]
|
591 |
+
cc = 0
|
592 |
+
fig = plt.figure(figsize=(10, 5))
|
593 |
+
plt.title(f"{words} - Energy - Cluster {cluster_id}")
|
594 |
+
for k,v in speech_data.items():
|
595 |
+
|
596 |
+
spk = k.split('**')[1]
|
597 |
+
|
598 |
+
word_times = seg_aligns[k]
|
599 |
+
|
600 |
+
rmse = [e for p,e in v]
|
601 |
+
# datapoint interval is 0.005 seconds
|
602 |
+
rmse_xvals = [x*0.005 for x in range(len(rmse))]
|
603 |
+
|
604 |
+
# centre around the first word boundary -
|
605 |
+
# if 3+ words, too bad.
|
606 |
+
if len(word_times)>1:
|
607 |
+
realign = np.mean([word_times[0][2],word_times[1][1]])
|
608 |
+
rmse_xvals = [x - realign for x in rmse_xvals]
|
609 |
+
word_times = [(w,s-realign,e-realign) for w,s,e in word_times]
|
610 |
+
plt.axvline(x= 0, color="gray", linestyle='--', linewidth=1, label=f"{word_times[0][0]} -> {word_times[1][0]} boundary")
|
611 |
+
|
612 |
+
if len(word_times)>2:
|
613 |
+
for i in range(1,len(word_times)-1):
|
614 |
+
bound_line = np.mean([word_times[i][2],word_times[i+1][1]])
|
615 |
+
plt.axvline(x=bound_line, color=colors[cc], linestyle='--', linewidth=1, label=f"Speaker {spk} -> {word_times[i+1][0]}")
|
616 |
+
|
617 |
+
plt.scatter(rmse_xvals, rmse, color=colors[cc], label=f"Speaker {spk}")
|
618 |
+
cc += 1
|
619 |
+
if cc >= len(colors):
|
620 |
+
cc=0
|
621 |
+
|
622 |
+
return fig
|
623 |
+
|
624 |
|
625 |
# want to:
|
626 |
# - find tts best cluster
|
scripts/runSQ.py
CHANGED
@@ -42,11 +42,11 @@ def run(sentence, voices, start_end_word_ix):
|
|
42 |
tts_sample, tts_speechmarks = get_tts(sentence,voices,tts_dir)
|
43 |
f0_tts(sentence, voices, tts_dir)
|
44 |
|
45 |
-
score,
|
46 |
|
47 |
# also stop forgetting duration.
|
48 |
|
49 |
-
return tts_sample, score,
|
50 |
|
51 |
|
52 |
def snorm(s):
|
@@ -253,7 +253,7 @@ def localtest():
|
|
253 |
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
|
254 |
|
255 |
|
256 |
-
score,
|
257 |
|
258 |
|
259 |
|
|
|
42 |
tts_sample, tts_speechmarks = get_tts(sentence,voices,tts_dir)
|
43 |
f0_tts(sentence, voices, tts_dir)
|
44 |
|
45 |
+
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
|
46 |
|
47 |
# also stop forgetting duration.
|
48 |
|
49 |
+
return tts_sample, score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e
|
50 |
|
51 |
|
52 |
def snorm(s):
|
|
|
253 |
f0_tts(sentence, voices, tts_dir, reaper_path = reaper_exc)
|
254 |
|
255 |
|
256 |
+
score, tts_fig_p, mid_fig_p, bad_fig_p, tts_fig_e, fig_mid_e, fig_bad_e = cl.cluster(norm_sentence, sentence, human_rec_ids, speech_aligns, speech_f0, speech_dir, tts_dir, voices, start_end_word_ix)
|
257 |
|
258 |
|
259 |
|