Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import tensorflow as tf | |
| from tensorflow.keras.applications.imagenet_utils import decode_predictions | |
| import cv2 | |
| from PIL import Image, ImageOps | |
| import numpy as np | |
| model = tf.keras.models.load_model('model_vgg16.hdf5') | |
| st.write(""" | |
| # Brain Tumor Prediction | |
| """ | |
| ) | |
| st.write("This is a simple image classification web app to predict brain tumor") | |
| file = st.file_uploader("Please upload an image file", type=["jpg", "png", "tif"]) | |
| def import_and_predict(image_data, model): | |
| size = (150, 150) | |
| image = ImageOps.fit(image_data, size, Image.Resampling.LANCZOS) | |
| image = np.asarray(image) | |
| img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| img_resize = (cv2.resize(img, dsize=(224, 224), interpolation=cv2.INTER_CUBIC))/255. | |
| img_reshape = img_resize[np.newaxis,...] | |
| prediction = model.predict(img_reshape) | |
| return prediction | |
| if file is None: | |
| st.text("Please upload an image file") | |
| else: | |
| image = Image.open(file) | |
| st.image(image, use_column_width=True) | |
| prediction = import_and_predict(image, model) | |
| if np.argmax(prediction) == 0: | |
| st.write("It is a glioma!") | |
| elif np.argmax(prediction) == 1: | |
| st.write("It is a meningioma!") | |
| elif np.argmax(prediction) == 2: | |
| st.write("It is not a tumor!") | |
| else: | |
| st.write("It is a pituitary!") | |
| st.text("Probability (0: glioma, 1: meningioma, 2: no_tumor, 3: pituitary)") | |
| st.write(prediction) |