Spaces:
Sleeping
Sleeping
import sys | |
import pytest | |
from numpy.testing import ( | |
assert_, assert_array_equal, assert_raises, | |
) | |
import numpy as np | |
from numpy import random | |
class TestRegression: | |
def test_VonMises_range(self): | |
# Make sure generated random variables are in [-pi, pi]. | |
# Regression test for ticket #986. | |
for mu in np.linspace(-7., 7., 5): | |
r = random.vonmises(mu, 1, 50) | |
assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) | |
def test_hypergeometric_range(self): | |
# Test for ticket #921 | |
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4)) | |
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0)) | |
# Test for ticket #5623 | |
args = [ | |
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems | |
] | |
is_64bits = sys.maxsize > 2**32 | |
if is_64bits and sys.platform != 'win32': | |
# Check for 64-bit systems | |
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) | |
for arg in args: | |
assert_(random.hypergeometric(*arg) > 0) | |
def test_logseries_convergence(self): | |
# Test for ticket #923 | |
N = 1000 | |
random.seed(0) | |
rvsn = random.logseries(0.8, size=N) | |
# these two frequency counts should be close to theoretical | |
# numbers with this large sample | |
# theoretical large N result is 0.49706795 | |
freq = np.sum(rvsn == 1) / float(N) | |
msg = f'Frequency was {freq:f}, should be > 0.45' | |
assert_(freq > 0.45, msg) | |
# theoretical large N result is 0.19882718 | |
freq = np.sum(rvsn == 2) / float(N) | |
msg = f'Frequency was {freq:f}, should be < 0.23' | |
assert_(freq < 0.23, msg) | |
def test_shuffle_mixed_dimension(self): | |
# Test for trac ticket #2074 | |
for t in [[1, 2, 3, None], | |
[(1, 1), (2, 2), (3, 3), None], | |
[1, (2, 2), (3, 3), None], | |
[(1, 1), 2, 3, None]]: | |
random.seed(12345) | |
shuffled = list(t) | |
random.shuffle(shuffled) | |
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object) | |
assert_array_equal(np.array(shuffled, dtype=object), expected) | |
def test_call_within_randomstate(self): | |
# Check that custom RandomState does not call into global state | |
m = random.RandomState() | |
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) | |
for i in range(3): | |
random.seed(i) | |
m.seed(4321) | |
# If m.state is not honored, the result will change | |
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) | |
def test_multivariate_normal_size_types(self): | |
# Test for multivariate_normal issue with 'size' argument. | |
# Check that the multivariate_normal size argument can be a | |
# numpy integer. | |
random.multivariate_normal([0], [[0]], size=1) | |
random.multivariate_normal([0], [[0]], size=np.int_(1)) | |
random.multivariate_normal([0], [[0]], size=np.int64(1)) | |
def test_beta_small_parameters(self): | |
# Test that beta with small a and b parameters does not produce | |
# NaNs due to roundoff errors causing 0 / 0, gh-5851 | |
random.seed(1234567890) | |
x = random.beta(0.0001, 0.0001, size=100) | |
assert_(not np.any(np.isnan(x)), 'Nans in random.beta') | |
def test_choice_sum_of_probs_tolerance(self): | |
# The sum of probs should be 1.0 with some tolerance. | |
# For low precision dtypes the tolerance was too tight. | |
# See numpy github issue 6123. | |
random.seed(1234) | |
a = [1, 2, 3] | |
counts = [4, 4, 2] | |
for dt in np.float16, np.float32, np.float64: | |
probs = np.array(counts, dtype=dt) / sum(counts) | |
c = random.choice(a, p=probs) | |
assert_(c in a) | |
assert_raises(ValueError, random.choice, a, p=probs*0.9) | |
def test_shuffle_of_array_of_different_length_strings(self): | |
# Test that permuting an array of different length strings | |
# will not cause a segfault on garbage collection | |
# Tests gh-7710 | |
random.seed(1234) | |
a = np.array(['a', 'a' * 1000]) | |
for _ in range(100): | |
random.shuffle(a) | |
# Force Garbage Collection - should not segfault. | |
import gc | |
gc.collect() | |
def test_shuffle_of_array_of_objects(self): | |
# Test that permuting an array of objects will not cause | |
# a segfault on garbage collection. | |
# See gh-7719 | |
random.seed(1234) | |
a = np.array([np.arange(1), np.arange(4)], dtype=object) | |
for _ in range(1000): | |
random.shuffle(a) | |
# Force Garbage Collection - should not segfault. | |
import gc | |
gc.collect() | |
def test_permutation_subclass(self): | |
class N(np.ndarray): | |
pass | |
random.seed(1) | |
orig = np.arange(3).view(N) | |
perm = random.permutation(orig) | |
assert_array_equal(perm, np.array([0, 2, 1])) | |
assert_array_equal(orig, np.arange(3).view(N)) | |
class M: | |
a = np.arange(5) | |
def __array__(self): | |
return self.a | |
random.seed(1) | |
m = M() | |
perm = random.permutation(m) | |
assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) | |
assert_array_equal(m.__array__(), np.arange(5)) | |
def test_warns_byteorder(self): | |
# GH 13159 | |
other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4' | |
with pytest.deprecated_call(match='non-native byteorder is not'): | |
random.randint(0, 200, size=10, dtype=other_byteord_dt) | |
def test_named_argument_initialization(self): | |
# GH 13669 | |
rs1 = np.random.RandomState(123456789) | |
rs2 = np.random.RandomState(seed=123456789) | |
assert rs1.randint(0, 100) == rs2.randint(0, 100) | |
def test_choice_retun_dtype(self): | |
# GH 9867 | |
c = np.random.choice(10, p=[.1]*10, size=2) | |
assert c.dtype == np.dtype(int) | |
c = np.random.choice(10, p=[.1]*10, replace=False, size=2) | |
assert c.dtype == np.dtype(int) | |
c = np.random.choice(10, size=2) | |
assert c.dtype == np.dtype(int) | |
c = np.random.choice(10, replace=False, size=2) | |
assert c.dtype == np.dtype(int) | |
def test_randint_117(self): | |
# GH 14189 | |
random.seed(0) | |
expected = np.array([2357136044, 2546248239, 3071714933, 3626093760, | |
2588848963, 3684848379, 2340255427, 3638918503, | |
1819583497, 2678185683], dtype='int64') | |
actual = random.randint(2**32, size=10) | |
assert_array_equal(actual, expected) | |
def test_p_zero_stream(self): | |
# Regression test for gh-14522. Ensure that future versions | |
# generate the same variates as version 1.16. | |
np.random.seed(12345) | |
assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]), | |
[0, 0, 0, 1, 1]) | |
def test_n_zero_stream(self): | |
# Regression test for gh-14522. Ensure that future versions | |
# generate the same variates as version 1.16. | |
np.random.seed(8675309) | |
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[3, 4, 2, 3, 3, 1, 5, 3, 1, 3]]) | |
assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)), | |
expected) | |